L(s) = 1 | + (0.884 + 0.466i)2-s + (−0.951 − 0.309i)3-s + (0.564 + 0.825i)4-s + (−0.696 − 0.717i)6-s + (0.967 + 0.254i)7-s + (0.113 + 0.993i)8-s + (0.809 + 0.587i)9-s + (−0.281 − 0.959i)12-s + (−0.336 + 0.941i)13-s + (0.736 + 0.676i)14-s + (−0.362 + 0.931i)16-s + (0.226 − 0.974i)17-s + (0.441 + 0.897i)18-s + (0.516 + 0.856i)19-s + (−0.841 − 0.540i)21-s + ⋯ |
L(s) = 1 | + (0.884 + 0.466i)2-s + (−0.951 − 0.309i)3-s + (0.564 + 0.825i)4-s + (−0.696 − 0.717i)6-s + (0.967 + 0.254i)7-s + (0.113 + 0.993i)8-s + (0.809 + 0.587i)9-s + (−0.281 − 0.959i)12-s + (−0.336 + 0.941i)13-s + (0.736 + 0.676i)14-s + (−0.362 + 0.931i)16-s + (0.226 − 0.974i)17-s + (0.441 + 0.897i)18-s + (0.516 + 0.856i)19-s + (−0.841 − 0.540i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.105 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.105 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.415563769 + 1.273066951i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.415563769 + 1.273066951i\) |
\(L(1)\) |
\(\approx\) |
\(1.341660850 + 0.5655498976i\) |
\(L(1)\) |
\(\approx\) |
\(1.341660850 + 0.5655498976i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.884 + 0.466i)T \) |
| 3 | \( 1 + (-0.951 - 0.309i)T \) |
| 7 | \( 1 + (0.967 + 0.254i)T \) |
| 13 | \( 1 + (-0.336 + 0.941i)T \) |
| 17 | \( 1 + (0.226 - 0.974i)T \) |
| 19 | \( 1 + (0.516 + 0.856i)T \) |
| 23 | \( 1 + (-0.540 - 0.841i)T \) |
| 29 | \( 1 + (-0.921 - 0.389i)T \) |
| 31 | \( 1 + (0.610 + 0.791i)T \) |
| 37 | \( 1 + (0.999 - 0.0285i)T \) |
| 41 | \( 1 + (0.985 + 0.170i)T \) |
| 43 | \( 1 + (-0.909 + 0.415i)T \) |
| 47 | \( 1 + (-0.441 + 0.897i)T \) |
| 53 | \( 1 + (-0.931 + 0.362i)T \) |
| 59 | \( 1 + (0.985 - 0.170i)T \) |
| 61 | \( 1 + (0.466 + 0.884i)T \) |
| 67 | \( 1 + (0.989 - 0.142i)T \) |
| 71 | \( 1 + (0.0855 - 0.996i)T \) |
| 73 | \( 1 + (-0.633 + 0.774i)T \) |
| 79 | \( 1 + (-0.870 + 0.491i)T \) |
| 83 | \( 1 + (-0.0570 - 0.998i)T \) |
| 89 | \( 1 + (0.654 + 0.755i)T \) |
| 97 | \( 1 + (0.980 + 0.198i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.80530505356548925962498551988, −21.96027486269651353235877816515, −21.51834871853360738762226786574, −20.549594770891886200934782433458, −19.9178275584866998563664486664, −18.73968779777518216336015617414, −17.78047522504639951486861006086, −17.14378658645233822878117555984, −16.02691728459070664781746122837, −15.18091180936194661898682729553, −14.62093419239229268323438542702, −13.38456781707162683836038104378, −12.71497490043474911503780561181, −11.656145723696158009536161599391, −11.21570909416661943026749651703, −10.33511370938682887110281473980, −9.597367972872384112061531265841, −7.955024075158539991267700851064, −6.99165618997040536020064711582, −5.81161354509878192797126322359, −5.25293547100701593667489012993, −4.35701159066334954063473323, −3.46295073101602956958503423385, −1.99645335711302091629896250019, −0.87262141383586502610080286783,
1.49655056184961692746643632374, 2.562314216361406191167420474928, 4.16563514024465204849707846900, 4.84159251922297654962457826788, 5.66392132230264359736934871164, 6.539179232490082195888848538152, 7.46963074699156534604190739209, 8.16879537949239699878372109513, 9.616644402566604864378054979302, 10.92046400818614848796751952605, 11.69191913763683207635098420872, 12.10607150277524407320681216579, 13.12419894338071883217194733643, 14.16044147060268638668779601594, 14.64958798843470448714364323388, 15.97152449064417143623121792722, 16.421715804022049258444442552487, 17.32739650922054678659947319634, 18.1058304163078507052136640986, 18.8818617903666407839960344836, 20.299056347190930486691910000885, 21.10547412530432751390287842843, 21.76097148500701492417091713453, 22.60731203663786290525838046147, 23.2192850800954055789322511513