| L(s) = 1 | + (0.929 + 0.368i)2-s + (−0.876 + 0.481i)3-s + (0.728 + 0.684i)4-s + (−0.992 + 0.125i)6-s + (0.809 + 0.587i)7-s + (0.425 + 0.904i)8-s + (0.535 − 0.844i)9-s + (−0.929 − 0.368i)11-s + (−0.968 − 0.248i)12-s + (−0.535 + 0.844i)13-s + (0.535 + 0.844i)14-s + (0.0627 + 0.998i)16-s + (−0.728 + 0.684i)17-s + (0.809 − 0.587i)18-s + (0.876 + 0.481i)19-s + ⋯ |
| L(s) = 1 | + (0.929 + 0.368i)2-s + (−0.876 + 0.481i)3-s + (0.728 + 0.684i)4-s + (−0.992 + 0.125i)6-s + (0.809 + 0.587i)7-s + (0.425 + 0.904i)8-s + (0.535 − 0.844i)9-s + (−0.929 − 0.368i)11-s + (−0.968 − 0.248i)12-s + (−0.535 + 0.844i)13-s + (0.535 + 0.844i)14-s + (0.0627 + 0.998i)16-s + (−0.728 + 0.684i)17-s + (0.809 − 0.587i)18-s + (0.876 + 0.481i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 125 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0376 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 125 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0376 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.025484560 + 0.9875355315i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.025484560 + 0.9875355315i\) |
| \(L(1)\) |
\(\approx\) |
\(1.215445941 + 0.6557256011i\) |
| \(L(1)\) |
\(\approx\) |
\(1.215445941 + 0.6557256011i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| good | 2 | \( 1 + (0.929 + 0.368i)T \) |
| 3 | \( 1 + (-0.876 + 0.481i)T \) |
| 7 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.929 - 0.368i)T \) |
| 13 | \( 1 + (-0.535 + 0.844i)T \) |
| 17 | \( 1 + (-0.728 + 0.684i)T \) |
| 19 | \( 1 + (0.876 + 0.481i)T \) |
| 23 | \( 1 + (0.637 - 0.770i)T \) |
| 29 | \( 1 + (-0.187 - 0.982i)T \) |
| 31 | \( 1 + (0.728 - 0.684i)T \) |
| 37 | \( 1 + (-0.0627 - 0.998i)T \) |
| 41 | \( 1 + (-0.637 - 0.770i)T \) |
| 43 | \( 1 + (-0.309 - 0.951i)T \) |
| 47 | \( 1 + (0.425 - 0.904i)T \) |
| 53 | \( 1 + (0.992 + 0.125i)T \) |
| 59 | \( 1 + (0.968 + 0.248i)T \) |
| 61 | \( 1 + (-0.637 + 0.770i)T \) |
| 67 | \( 1 + (0.187 - 0.982i)T \) |
| 71 | \( 1 + (-0.425 + 0.904i)T \) |
| 73 | \( 1 + (-0.968 + 0.248i)T \) |
| 79 | \( 1 + (0.876 - 0.481i)T \) |
| 83 | \( 1 + (-0.876 - 0.481i)T \) |
| 89 | \( 1 + (0.968 - 0.248i)T \) |
| 97 | \( 1 + (0.187 + 0.982i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.98962057155059403548631328968, −27.95120358283948216392468054153, −26.91894682799676396145809779765, −25.16641472604483015770972979344, −24.278454784959195557953129909525, −23.527034395484320257523506610993, −22.70577269271266433696485352482, −21.765264505312017613520758124907, −20.62005488693106892833173306432, −19.74692687225436774951070713233, −18.28975113769780780520260054553, −17.50023792946863049593108223086, −16.11008500817027070524950848907, −15.104834626038505937235958901635, −13.69662150087929364713293723518, −12.99365365250670467420191349265, −11.8044160524607267184679964838, −10.97917423164582937219639690341, −10.0487784236661250077127097266, −7.6947065710414001742682405145, −6.8714338458701787199562852251, −5.22384808611799825941660372242, −4.8095874868558603281488236857, −2.8155052750332962697369480996, −1.2471604189759904933118423347,
2.27512042144352539047188868181, 4.065107309413524928491268703487, 5.08999034635453267834084840244, 5.9305308118263982728585918095, 7.26335372523374004166222835953, 8.66805591349231292539565174290, 10.435728890000091261247354161590, 11.491514399851142324548493287481, 12.21415863582210299251224453024, 13.515490850364795497846096220779, 14.83530013909913938162972179830, 15.57785316651553409643970607250, 16.62742280054242959451294065780, 17.54050106147067681210857909373, 18.74286372863868605918609057473, 20.603274263840307122466853142604, 21.32374002175541569017517623771, 22.066998941248936116533595444585, 23.06800510768908370100386275177, 24.1226665985023725373743536925, 24.600615823036640277137417677102, 26.29580900670062935101892075620, 26.92648810053618158288204550578, 28.520526506876013479113076439363, 28.96317322147509274080174361131