Properties

Label 1-595-595.123-r1-0-0
Degree $1$
Conductor $595$
Sign $-0.539 + 0.842i$
Analytic cond. $63.9416$
Root an. cond. $63.9416$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s + i·6-s i·8-s + (−0.5 + 0.866i)9-s + (0.866 − 0.5i)11-s + (0.5 − 0.866i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s − 22-s + (0.5 − 0.866i)23-s + (−0.866 + 0.5i)24-s + ⋯
L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s + i·6-s i·8-s + (−0.5 + 0.866i)9-s + (0.866 − 0.5i)11-s + (0.5 − 0.866i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s − 22-s + (0.5 − 0.866i)23-s + (−0.866 + 0.5i)24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.539 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.539 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $-0.539 + 0.842i$
Analytic conductor: \(63.9416\)
Root analytic conductor: \(63.9416\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{595} (123, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 595,\ (1:\ ),\ -0.539 + 0.842i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.01065811558 + 0.01948087263i\)
\(L(\frac12)\) \(\approx\) \(0.01065811558 + 0.01948087263i\)
\(L(1)\) \(\approx\) \(0.5156386214 - 0.1995963013i\)
\(L(1)\) \(\approx\) \(0.5156386214 - 0.1995963013i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
17 \( 1 \)
good2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (-0.5 - 0.866i)T \)
11 \( 1 + (0.866 - 0.5i)T \)
13 \( 1 + iT \)
19 \( 1 + (-0.5 + 0.866i)T \)
23 \( 1 + (0.5 - 0.866i)T \)
29 \( 1 + iT \)
31 \( 1 + (-0.866 + 0.5i)T \)
37 \( 1 + (0.5 - 0.866i)T \)
41 \( 1 + iT \)
43 \( 1 - iT \)
47 \( 1 + (0.866 + 0.5i)T \)
53 \( 1 + (-0.866 + 0.5i)T \)
59 \( 1 + (-0.5 - 0.866i)T \)
61 \( 1 + (-0.866 - 0.5i)T \)
67 \( 1 + (-0.866 + 0.5i)T \)
71 \( 1 - iT \)
73 \( 1 + (-0.5 - 0.866i)T \)
79 \( 1 + (0.866 + 0.5i)T \)
83 \( 1 - iT \)
89 \( 1 + (0.5 - 0.866i)T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−22.724394183523436350872337957327, −21.899250065290876681279370464621, −20.81810623625342823440768433626, −20.082881504346582484318814088367, −19.36948415022370901337710461412, −18.18549899091617253859602077466, −17.34730916343335886231362379607, −17.04496402689820395829074246695, −15.96962567486768722532163097395, −15.156823217585509344508539214574, −14.82051345619748972983581650912, −13.46149971371436691674203914430, −12.1016890003355366225973844470, −11.24441824112440298022135618236, −10.53242116129024799518076218448, −9.58044903469910735850174030417, −9.07682854422714421948919735356, −7.93208309140033742072836041330, −6.88140831177430704500793878380, −5.98267205439075899357079516516, −5.13952560925442208903667530608, −4.07854313543728200719015461825, −2.70461784100553788333494249880, −1.16939582693500338396513687717, −0.008875509353769136659016023175, 1.23907440037101337143091558225, 1.972003956373525735055178151617, 3.24549857846826420937806482913, 4.45963244846481998505420375166, 6.0314637211523011271523750772, 6.73390308972555393383767887872, 7.57917061541662367492707967223, 8.629067046428876180132983878231, 9.262259438546583734826180567490, 10.656002477167397858885712525405, 11.15464198150208807514503397070, 12.171594452578660484274506691014, 12.600490389268104055466632282536, 13.79011840462115198665281446503, 14.6512365670209106556840356470, 16.321926239677502692140161397280, 16.62308979558569177805344478329, 17.44716552022387634347257830337, 18.425179361427753598297945874408, 18.91562446682281873067562612688, 19.630931853655022325964718539450, 20.49264559204764067103496970434, 21.61754466172957086286028949262, 22.16410802501220523145348685646, 23.27516687134391674753355579982

Graph of the $Z$-function along the critical line