L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s + i·6-s − i·8-s + (−0.5 + 0.866i)9-s + (0.866 − 0.5i)11-s + (0.5 − 0.866i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s − 22-s + (0.5 − 0.866i)23-s + (−0.866 + 0.5i)24-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s + i·6-s − i·8-s + (−0.5 + 0.866i)9-s + (0.866 − 0.5i)11-s + (0.5 − 0.866i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s − 22-s + (0.5 − 0.866i)23-s + (−0.866 + 0.5i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.539 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.539 + 0.842i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01065811558 + 0.01948087263i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01065811558 + 0.01948087263i\) |
\(L(1)\) |
\(\approx\) |
\(0.5156386214 - 0.1995963013i\) |
\(L(1)\) |
\(\approx\) |
\(0.5156386214 - 0.1995963013i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + iT \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + iT \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.866 - 0.5i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.866 + 0.5i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.724394183523436350872337957327, −21.899250065290876681279370464621, −20.81810623625342823440768433626, −20.082881504346582484318814088367, −19.36948415022370901337710461412, −18.18549899091617253859602077466, −17.34730916343335886231362379607, −17.04496402689820395829074246695, −15.96962567486768722532163097395, −15.156823217585509344508539214574, −14.82051345619748972983581650912, −13.46149971371436691674203914430, −12.1016890003355366225973844470, −11.24441824112440298022135618236, −10.53242116129024799518076218448, −9.58044903469910735850174030417, −9.07682854422714421948919735356, −7.93208309140033742072836041330, −6.88140831177430704500793878380, −5.98267205439075899357079516516, −5.13952560925442208903667530608, −4.07854313543728200719015461825, −2.70461784100553788333494249880, −1.16939582693500338396513687717, −0.008875509353769136659016023175,
1.23907440037101337143091558225, 1.972003956373525735055178151617, 3.24549857846826420937806482913, 4.45963244846481998505420375166, 6.0314637211523011271523750772, 6.73390308972555393383767887872, 7.57917061541662367492707967223, 8.629067046428876180132983878231, 9.262259438546583734826180567490, 10.656002477167397858885712525405, 11.15464198150208807514503397070, 12.171594452578660484274506691014, 12.600490389268104055466632282536, 13.79011840462115198665281446503, 14.6512365670209106556840356470, 16.321926239677502692140161397280, 16.62308979558569177805344478329, 17.44716552022387634347257830337, 18.425179361427753598297945874408, 18.91562446682281873067562612688, 19.630931853655022325964718539450, 20.49264559204764067103496970434, 21.61754466172957086286028949262, 22.16410802501220523145348685646, 23.27516687134391674753355579982