L(s) = 1 | + (0.642 + 0.766i)5-s + (0.173 − 0.984i)7-s + (−0.984 − 0.173i)11-s − 17-s + (−0.866 + 0.5i)19-s + (−0.173 − 0.984i)23-s + (−0.173 + 0.984i)25-s + (0.342 + 0.939i)29-s + (0.939 + 0.342i)31-s + (0.866 − 0.5i)35-s + (0.866 + 0.5i)37-s + (0.766 − 0.642i)41-s + (−0.342 − 0.939i)43-s + (−0.939 + 0.342i)47-s + (−0.939 − 0.342i)49-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)5-s + (0.173 − 0.984i)7-s + (−0.984 − 0.173i)11-s − 17-s + (−0.866 + 0.5i)19-s + (−0.173 − 0.984i)23-s + (−0.173 + 0.984i)25-s + (0.342 + 0.939i)29-s + (0.939 + 0.342i)31-s + (0.866 − 0.5i)35-s + (0.866 + 0.5i)37-s + (0.766 − 0.642i)41-s + (−0.342 − 0.939i)43-s + (−0.939 + 0.342i)47-s + (−0.939 − 0.342i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.636 + 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.636 + 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.367633357 + 0.6445212371i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.367633357 + 0.6445212371i\) |
\(L(1)\) |
\(\approx\) |
\(1.055132500 + 0.08580949644i\) |
\(L(1)\) |
\(\approx\) |
\(1.055132500 + 0.08580949644i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (0.642 + 0.766i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
| 11 | \( 1 + (-0.984 - 0.173i)T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (0.342 + 0.939i)T \) |
| 31 | \( 1 + (0.939 + 0.342i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (-0.342 - 0.939i)T \) |
| 47 | \( 1 + (-0.939 + 0.342i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.984 - 0.173i)T \) |
| 61 | \( 1 + (0.984 + 0.173i)T \) |
| 67 | \( 1 + (-0.642 - 0.766i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.984 + 0.173i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.939 + 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.8122180593930058250809896463, −17.30739731729801754990305209393, −16.220596340041693383501939790561, −15.89608073981780434694288847278, −15.12033633827517360495748584663, −14.61023857677217302745684106243, −13.42237899385780618405636940652, −13.210141535229256584749437837125, −12.64304206265478039829986661772, −11.66652198182327625977668809816, −11.29569595324816584429965421566, −10.23240522783389607484890643569, −9.667581963161821791524320222315, −9.0377166280973696637071392731, −8.2943611067977316077400989196, −7.91346279605934159953474680507, −6.702812885613694472735765608975, −6.06652350914038861463037392430, −5.43970518886596601570612020229, −4.73844016272996062123031437587, −4.205217029011526668857536492525, −2.81232642314253004845568456160, −2.34204751336445437165708409597, −1.67326266769825188782069103585, −0.46271573241921924801839599166,
0.783599204482829707935220421873, 1.890819842334692917583979003699, 2.52491297179603917274423683239, 3.27440831000529672315817632414, 4.214191643511609874978970346789, 4.819139386435517706861234839575, 5.72529059109818276308919724078, 6.56878547758811821629865901555, 6.87564911213112260502008313808, 7.84605999636814516071319072819, 8.38981575180759809683167452898, 9.29274131293206337216054708667, 10.192973172834081623302508138303, 10.62598317745868672995203848511, 10.905876016480437671254211599924, 11.93338408209887922745777610563, 12.87780404235733152828921189501, 13.34114066029902922040214396309, 13.96559472563852870772496771292, 14.57783920572449706241998390127, 15.177980463573085033827607243366, 16.04137418834077582353511707251, 16.62595313306424325650277317097, 17.43222525753910395434292914212, 17.85503204679518780712818879674