| L(s) = 1 | + (−0.654 − 0.755i)2-s + (0.309 − 0.951i)3-s + (−0.142 + 0.989i)4-s + (−0.921 + 0.389i)6-s + (0.941 + 0.336i)7-s + (0.841 − 0.540i)8-s + (−0.809 − 0.587i)9-s + (0.897 + 0.441i)12-s + (0.696 − 0.717i)13-s + (−0.362 − 0.931i)14-s + (−0.959 − 0.281i)16-s + (0.993 − 0.113i)17-s + (0.0855 + 0.996i)18-s + (0.415 − 0.909i)19-s + (0.610 − 0.791i)21-s + ⋯ |
| L(s) = 1 | + (−0.654 − 0.755i)2-s + (0.309 − 0.951i)3-s + (−0.142 + 0.989i)4-s + (−0.921 + 0.389i)6-s + (0.941 + 0.336i)7-s + (0.841 − 0.540i)8-s + (−0.809 − 0.587i)9-s + (0.897 + 0.441i)12-s + (0.696 − 0.717i)13-s + (−0.362 − 0.931i)14-s + (−0.959 − 0.281i)16-s + (0.993 − 0.113i)17-s + (0.0855 + 0.996i)18-s + (0.415 − 0.909i)19-s + (0.610 − 0.791i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7160546175 - 1.559361321i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7160546175 - 1.559361321i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8111625010 - 0.6727265789i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8111625010 - 0.6727265789i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.654 - 0.755i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.941 + 0.336i)T \) |
| 13 | \( 1 + (0.696 - 0.717i)T \) |
| 17 | \( 1 + (0.993 - 0.113i)T \) |
| 19 | \( 1 + (0.415 - 0.909i)T \) |
| 23 | \( 1 + (-0.0285 - 0.999i)T \) |
| 29 | \( 1 + (0.415 - 0.909i)T \) |
| 31 | \( 1 + (0.696 + 0.717i)T \) |
| 37 | \( 1 + (0.696 + 0.717i)T \) |
| 41 | \( 1 + (0.516 - 0.856i)T \) |
| 43 | \( 1 + (0.841 - 0.540i)T \) |
| 47 | \( 1 + (0.516 + 0.856i)T \) |
| 53 | \( 1 + (-0.564 - 0.825i)T \) |
| 59 | \( 1 + (0.0855 - 0.996i)T \) |
| 61 | \( 1 + (0.0855 - 0.996i)T \) |
| 67 | \( 1 + (0.0855 + 0.996i)T \) |
| 71 | \( 1 + (-0.870 + 0.491i)T \) |
| 73 | \( 1 + (-0.564 + 0.825i)T \) |
| 79 | \( 1 + (-0.254 + 0.967i)T \) |
| 83 | \( 1 + (-0.0285 + 0.999i)T \) |
| 89 | \( 1 + (-0.736 + 0.676i)T \) |
| 97 | \( 1 + (0.774 + 0.633i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.27943870284540570351565275593, −18.46216360232201196826286340477, −17.83527250553116950269793705221, −17.02740566718113579077182810762, −16.44990770702210081072998709834, −16.00393773521037039218137643739, −15.099228703786704318307188900587, −14.54143882512196089552163309946, −14.04535087437882043559654265477, −13.42078395892868871165385385122, −11.92562234930440908613366892166, −11.274934633171373633335098010305, −10.574561045784720102602948608857, −9.97098241005339710873448578812, −9.2109136782401418354305225561, −8.612820290716492293323586266837, −7.76624069737485081158776960751, −7.44666533131265331683265693464, −6.01884706540740840590339551758, −5.65527922802961864787812037119, −4.63284239150687977868384174359, −4.13043733003338975384952949551, −3.091390415267055020444360735967, −1.80980740386630371319646512264, −1.10200613916287335113072175414,
0.80927714386788096879102082547, 1.21647073219420491714131223914, 2.398636241941797690180514715757, 2.77750696727962745126418487595, 3.77714790017585891083611009345, 4.80658406902635574188670161007, 5.75177357661899482358301712803, 6.70865105743640540943629051554, 7.56821260768061172481282507582, 8.171062534845215020322367095576, 8.57606074704440010743386285316, 9.42598303636157139469698063880, 10.325312749674287613560871987777, 11.1640605127055625942644131208, 11.65327240455104073822586850918, 12.43577199419722432869624864083, 12.897528380049535021559711572798, 13.88397222232874010207521494873, 14.250675797943074777687884168828, 15.35884592983013501283224796797, 16.06570632342683016257613786096, 17.23581730920604523354727296183, 17.56035017548130203924172441529, 18.18304786430946607498023845612, 18.86452132719031080796773128046