L(s) = 1 | + (−0.989 + 0.142i)2-s + (−0.951 + 0.309i)3-s + (0.959 − 0.281i)4-s + (0.897 − 0.441i)6-s + (0.0570 + 0.998i)7-s + (−0.909 + 0.415i)8-s + (0.809 − 0.587i)9-s + (−0.825 + 0.564i)12-s + (0.791 + 0.610i)13-s + (−0.198 − 0.980i)14-s + (0.841 − 0.540i)16-s + (−0.856 − 0.516i)17-s + (−0.717 + 0.696i)18-s + (0.654 − 0.755i)19-s + (−0.362 − 0.931i)21-s + ⋯ |
L(s) = 1 | + (−0.989 + 0.142i)2-s + (−0.951 + 0.309i)3-s + (0.959 − 0.281i)4-s + (0.897 − 0.441i)6-s + (0.0570 + 0.998i)7-s + (−0.909 + 0.415i)8-s + (0.809 − 0.587i)9-s + (−0.825 + 0.564i)12-s + (0.791 + 0.610i)13-s + (−0.198 − 0.980i)14-s + (0.841 − 0.540i)16-s + (−0.856 − 0.516i)17-s + (−0.717 + 0.696i)18-s + (0.654 − 0.755i)19-s + (−0.362 − 0.931i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9820094844 + 0.4368115130i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9820094844 + 0.4368115130i\) |
\(L(1)\) |
\(\approx\) |
\(0.5807428031 + 0.1441648010i\) |
\(L(1)\) |
\(\approx\) |
\(0.5807428031 + 0.1441648010i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.989 + 0.142i)T \) |
| 3 | \( 1 + (-0.951 + 0.309i)T \) |
| 7 | \( 1 + (0.0570 + 0.998i)T \) |
| 13 | \( 1 + (0.791 + 0.610i)T \) |
| 17 | \( 1 + (-0.856 - 0.516i)T \) |
| 19 | \( 1 + (0.654 - 0.755i)T \) |
| 23 | \( 1 + (0.967 - 0.254i)T \) |
| 29 | \( 1 + (0.654 - 0.755i)T \) |
| 31 | \( 1 + (0.610 + 0.791i)T \) |
| 37 | \( 1 + (0.791 - 0.610i)T \) |
| 41 | \( 1 + (-0.985 - 0.170i)T \) |
| 43 | \( 1 + (-0.909 + 0.415i)T \) |
| 47 | \( 1 + (0.170 + 0.985i)T \) |
| 53 | \( 1 + (0.633 + 0.774i)T \) |
| 59 | \( 1 + (-0.696 + 0.717i)T \) |
| 61 | \( 1 + (0.696 - 0.717i)T \) |
| 67 | \( 1 + (0.717 - 0.696i)T \) |
| 71 | \( 1 + (0.0855 - 0.996i)T \) |
| 73 | \( 1 + (-0.633 + 0.774i)T \) |
| 79 | \( 1 + (0.736 + 0.676i)T \) |
| 83 | \( 1 + (-0.967 - 0.254i)T \) |
| 89 | \( 1 + (0.921 - 0.389i)T \) |
| 97 | \( 1 + (-0.113 - 0.993i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.63755887844204263266911277620, −17.990868225844682675674872571361, −17.4596412644162342318105611345, −16.81814904392521026958527561570, −16.32543822570065697961600468273, −15.56076011314583951852362361794, −14.84458101956456434410775713098, −13.475012296081192953654862621392, −13.18036869291700365654825715558, −12.208227267977815940187290267714, −11.443223216319859291046469736073, −10.96880560256100382953197950340, −10.23834347191033447901800992942, −9.84750894612066273288500128838, −8.5640766198317787222626872316, −8.05919412987559732423970707860, −7.13956542497557260747263364105, −6.68811856500476990511459141015, −5.91468905003527222306668117289, −5.00773291925292684489346906927, −3.94967537512481606678157087935, −3.15217920101986826964500999062, −1.87754697275856456187850697308, −1.12927683038556212380463865283, −0.54053683444986171000826230314,
0.55416003875155715895131853869, 1.353709709985337273498399728136, 2.39100040216601110770189487878, 3.2229820753417859790538469345, 4.56846854988641051360259067400, 5.18812460659052297416374022092, 6.14816556299348559325713037632, 6.56488065937706241961802387284, 7.326310871324706342831747327826, 8.43878039557817648077519528952, 9.06250413170943426753858943624, 9.55974071305251856465584961542, 10.470260932528618985455152027259, 11.27186712223807706129904351518, 11.55181664248422130238009313264, 12.283536504295707411335741800626, 13.19806529375946155104428956139, 14.220027924831867175392268348467, 15.410614046041383268996393132058, 15.50096675565435717533175998845, 16.21946623163932171154858271221, 16.939308614519440452298356775008, 17.66369689433716325908293951263, 18.23532089767703989015431826292, 18.64301453967916707982517763958