L(s) = 1 | + (−0.998 − 0.0570i)2-s + (−0.809 − 0.587i)3-s + (0.993 + 0.113i)4-s + (0.774 + 0.633i)6-s + (0.516 + 0.856i)7-s + (−0.985 − 0.170i)8-s + (0.309 + 0.951i)9-s + (−0.736 − 0.676i)12-s + (0.993 + 0.113i)13-s + (−0.466 − 0.884i)14-s + (0.974 + 0.226i)16-s + (−0.0285 − 0.999i)17-s + (−0.254 − 0.967i)18-s + (−0.0285 + 0.999i)19-s + (0.0855 − 0.996i)21-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0570i)2-s + (−0.809 − 0.587i)3-s + (0.993 + 0.113i)4-s + (0.774 + 0.633i)6-s + (0.516 + 0.856i)7-s + (−0.985 − 0.170i)8-s + (0.309 + 0.951i)9-s + (−0.736 − 0.676i)12-s + (0.993 + 0.113i)13-s + (−0.466 − 0.884i)14-s + (0.974 + 0.226i)16-s + (−0.0285 − 0.999i)17-s + (−0.254 − 0.967i)18-s + (−0.0285 + 0.999i)19-s + (0.0855 − 0.996i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00675 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00675 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5153587615 - 0.5118915067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5153587615 - 0.5118915067i\) |
\(L(1)\) |
\(\approx\) |
\(0.5901634033 - 0.1239784065i\) |
\(L(1)\) |
\(\approx\) |
\(0.5901634033 - 0.1239784065i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.998 - 0.0570i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + (0.516 + 0.856i)T \) |
| 13 | \( 1 + (0.993 + 0.113i)T \) |
| 17 | \( 1 + (-0.0285 - 0.999i)T \) |
| 19 | \( 1 + (-0.0285 + 0.999i)T \) |
| 23 | \( 1 + (0.516 - 0.856i)T \) |
| 29 | \( 1 + (-0.564 - 0.825i)T \) |
| 31 | \( 1 + (0.415 + 0.909i)T \) |
| 37 | \( 1 + (0.198 - 0.980i)T \) |
| 41 | \( 1 + (0.841 - 0.540i)T \) |
| 43 | \( 1 + (-0.142 - 0.989i)T \) |
| 47 | \( 1 + (-0.362 - 0.931i)T \) |
| 53 | \( 1 + (0.516 + 0.856i)T \) |
| 59 | \( 1 + (-0.362 - 0.931i)T \) |
| 61 | \( 1 + (0.774 - 0.633i)T \) |
| 67 | \( 1 + (-0.998 - 0.0570i)T \) |
| 71 | \( 1 + (-0.959 + 0.281i)T \) |
| 73 | \( 1 + (-0.654 - 0.755i)T \) |
| 79 | \( 1 + (0.897 + 0.441i)T \) |
| 83 | \( 1 + (-0.921 - 0.389i)T \) |
| 89 | \( 1 + (-0.0285 - 0.999i)T \) |
| 97 | \( 1 + (-0.985 - 0.170i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.216541208044503047334168385553, −18.21476472471908283824960412620, −17.71463086312279937852818240634, −17.24609590492844862369187431495, −16.504409139428611029548242140453, −16.05495970626056173855136022937, −15.04764943577889600949351625128, −14.85111102740238720111291866274, −13.466798958787623261642715325038, −12.846238292992910244235330217081, −11.66778245393842301063222106753, −11.20223764552017849772449467430, −10.77264979957575737163508292038, −10.042070453916242253088433884225, −9.32770137371172017419847312596, −8.55594327415737531912888356582, −7.76049780899130225835440026239, −6.96205271205333549024005465032, −6.26139842472617216703305009925, −5.56423806924002603042356365602, −4.56987982261419520892744042563, −3.78405609462250441347508149685, −2.89029353553923428079565031954, −1.42126580574646087018317082679, −1.02704562711365198665283634867,
0.41810909562916107755846873564, 1.43323703093770413660248775849, 2.09204730587504155194800125217, 2.947041545244421313958139321283, 4.21018119953720451332235628301, 5.38669805628939167895895051543, 5.85986765208544883797802452145, 6.65820119636200911432422151432, 7.37747311392354894405805529431, 8.1658166830854866026679912081, 8.741777533021628183510190052402, 9.54164873593054767261320434659, 10.57048087698811373680268382442, 10.98151801149084359311789941705, 11.83897224307701088900096124333, 12.14193045135324575441416437879, 13.00304082541793412318017583948, 13.97423164592223980263575289482, 14.81869337116369207187305572467, 15.78390054074865326564956226086, 16.166892613803515551645275835695, 16.92426467165965947195784961654, 17.66702624413801720667276367263, 18.22665685453931647002864544634, 18.73054119536780114183967736768