L(s) = 1 | + (0.466 − 0.884i)2-s + (−0.309 − 0.951i)3-s + (−0.564 − 0.825i)4-s + (−0.985 − 0.170i)6-s + (−0.841 − 0.540i)7-s + (−0.993 + 0.113i)8-s + (−0.809 + 0.587i)9-s + (−0.610 + 0.791i)12-s + (−0.610 + 0.791i)13-s + (−0.870 + 0.491i)14-s + (−0.362 + 0.931i)16-s + (0.921 − 0.389i)17-s + (0.142 + 0.989i)18-s + (0.516 + 0.856i)19-s + (−0.254 + 0.967i)21-s + ⋯ |
L(s) = 1 | + (0.466 − 0.884i)2-s + (−0.309 − 0.951i)3-s + (−0.564 − 0.825i)4-s + (−0.985 − 0.170i)6-s + (−0.841 − 0.540i)7-s + (−0.993 + 0.113i)8-s + (−0.809 + 0.587i)9-s + (−0.610 + 0.791i)12-s + (−0.610 + 0.791i)13-s + (−0.870 + 0.491i)14-s + (−0.362 + 0.931i)16-s + (0.921 − 0.389i)17-s + (0.142 + 0.989i)18-s + (0.516 + 0.856i)19-s + (−0.254 + 0.967i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.571 - 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.571 - 0.820i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5806633158 - 1.111643607i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5806633158 - 1.111643607i\) |
\(L(1)\) |
\(\approx\) |
\(0.6740838996 - 0.6866624448i\) |
\(L(1)\) |
\(\approx\) |
\(0.6740838996 - 0.6866624448i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.466 - 0.884i)T \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 7 | \( 1 + (-0.841 - 0.540i)T \) |
| 13 | \( 1 + (-0.610 + 0.791i)T \) |
| 17 | \( 1 + (0.921 - 0.389i)T \) |
| 19 | \( 1 + (0.516 + 0.856i)T \) |
| 23 | \( 1 + (0.998 + 0.0570i)T \) |
| 29 | \( 1 + (-0.921 - 0.389i)T \) |
| 31 | \( 1 + (-0.564 + 0.825i)T \) |
| 37 | \( 1 + (-0.941 + 0.336i)T \) |
| 41 | \( 1 + (0.696 + 0.717i)T \) |
| 43 | \( 1 + (-0.415 - 0.909i)T \) |
| 47 | \( 1 + (0.985 - 0.170i)T \) |
| 53 | \( 1 + (0.254 - 0.967i)T \) |
| 59 | \( 1 + (-0.466 - 0.884i)T \) |
| 61 | \( 1 + (0.696 - 0.717i)T \) |
| 67 | \( 1 + (0.985 + 0.170i)T \) |
| 71 | \( 1 + (-0.921 - 0.389i)T \) |
| 73 | \( 1 + (0.998 + 0.0570i)T \) |
| 79 | \( 1 + (0.993 + 0.113i)T \) |
| 83 | \( 1 + (-0.774 + 0.633i)T \) |
| 89 | \( 1 + (0.0855 + 0.996i)T \) |
| 97 | \( 1 + (0.736 - 0.676i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.231801476462278942664529032008, −18.41942728916173685976184024562, −17.58677678891683174029724213716, −16.96447327522576778260339792340, −16.44344367788834147455972539719, −15.709460141193220277609549840779, −15.15821149156720179215939248591, −14.740449271441601280147402963743, −13.83016416649407609637903354722, −12.88369355312597478015674546739, −12.453040975960532346354052354495, −11.637627196771373656220348694, −10.7265823595311265451656278663, −9.8407489341937706656886460539, −9.22492357523170366693267119117, −8.70780332941264023846626801431, −7.58733225129717774335188033234, −6.99009064965576778277697470572, −5.86190227798221704078976898356, −5.58501694136552807308982111202, −4.86685000357867133870030076579, −3.89406262990551869009012606461, −3.20905544248159991676011072724, −2.61583232528356288594371744811, −0.58908261678117671172379910091,
0.6188067625900831950590396141, 1.47645793443562632815122751488, 2.29431414005273450610990023551, 3.23924887523234098531893113506, 3.797103590150267109002416625014, 5.05221109250777656711649623664, 5.50688973014737399572598886780, 6.523155578353497026399347115655, 7.061006887208180478405615005341, 7.90507518040900089863149710240, 9.02486324360920749918759254984, 9.66792516785308291243277219144, 10.39502490198005740916201910501, 11.19767037000201003802460905742, 11.88762166999250678358490485065, 12.49452888932642000682269865249, 12.96855146279891032520390272455, 13.90985026063307369334881063850, 14.12057315940236878215012497838, 15.044217236690725280430162299889, 16.204844105152217893518431099526, 16.82222698319898702517780721619, 17.48112306970396300406301708929, 18.526068831549387823009070101679, 18.88174012719052086321545510454