| L(s) = 1 | + (−0.564 + 0.825i)2-s + (0.309 − 0.951i)3-s + (−0.362 − 0.931i)4-s + (0.610 + 0.791i)6-s + (0.198 + 0.980i)7-s + (0.974 + 0.226i)8-s + (−0.809 − 0.587i)9-s + (−0.998 + 0.0570i)12-s + (−0.362 − 0.931i)13-s + (−0.921 − 0.389i)14-s + (−0.736 + 0.676i)16-s + (−0.466 + 0.884i)17-s + (0.941 − 0.336i)18-s + (−0.466 − 0.884i)19-s + (0.993 + 0.113i)21-s + ⋯ |
| L(s) = 1 | + (−0.564 + 0.825i)2-s + (0.309 − 0.951i)3-s + (−0.362 − 0.931i)4-s + (0.610 + 0.791i)6-s + (0.198 + 0.980i)7-s + (0.974 + 0.226i)8-s + (−0.809 − 0.587i)9-s + (−0.998 + 0.0570i)12-s + (−0.362 − 0.931i)13-s + (−0.921 − 0.389i)14-s + (−0.736 + 0.676i)16-s + (−0.466 + 0.884i)17-s + (0.941 − 0.336i)18-s + (−0.466 − 0.884i)19-s + (0.993 + 0.113i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.362i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.932 - 0.362i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.06036982317 - 0.3219155534i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.06036982317 - 0.3219155534i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7040106824 + 0.02924411189i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7040106824 + 0.02924411189i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.564 + 0.825i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 + (0.198 + 0.980i)T \) |
| 13 | \( 1 + (-0.362 - 0.931i)T \) |
| 17 | \( 1 + (-0.466 + 0.884i)T \) |
| 19 | \( 1 + (-0.466 - 0.884i)T \) |
| 23 | \( 1 + (0.198 - 0.980i)T \) |
| 29 | \( 1 + (0.696 - 0.717i)T \) |
| 31 | \( 1 + (0.841 - 0.540i)T \) |
| 37 | \( 1 + (-0.254 - 0.967i)T \) |
| 41 | \( 1 + (-0.959 - 0.281i)T \) |
| 43 | \( 1 + (-0.654 - 0.755i)T \) |
| 47 | \( 1 + (-0.0285 + 0.999i)T \) |
| 53 | \( 1 + (0.198 + 0.980i)T \) |
| 59 | \( 1 + (-0.0285 + 0.999i)T \) |
| 61 | \( 1 + (0.610 - 0.791i)T \) |
| 67 | \( 1 + (-0.564 + 0.825i)T \) |
| 71 | \( 1 + (-0.142 + 0.989i)T \) |
| 73 | \( 1 + (0.415 + 0.909i)T \) |
| 79 | \( 1 + (0.0855 - 0.996i)T \) |
| 83 | \( 1 + (-0.870 + 0.491i)T \) |
| 89 | \( 1 + (-0.466 + 0.884i)T \) |
| 97 | \( 1 + (0.974 + 0.226i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.705008455429140593102613048611, −18.80971147894167475225526248074, −17.95065671906834152136155619378, −17.195595255710146783471893488425, −16.64180589613424134765862122943, −16.16469768828560167367431843809, −15.211496262564180804885524098324, −14.23532054002410417794108182310, −13.79649805885010791008678044454, −13.12208317317734848525179780151, −11.87534475893656299270180358896, −11.53981746277489918206427138739, −10.68727805041624259385811960367, −10.046579772943253689824685807067, −9.645778561014893545355552582090, −8.71683953801277407953223844435, −8.19429975856489491187449793354, −7.27864355062226898693010574834, −6.545038661345227801008378314357, −4.87207251133363540818821260730, −4.73152779968745941181153849432, −3.666524931007069382649164395840, −3.21803183044785892274638984737, −2.13554218254859908608330679811, −1.318719376865836378003843503640,
0.121423084297680030131784835614, 1.17691958193807783807418437022, 2.255336043210664429511176754701, 2.70987728871438434168896913893, 4.18887321513236745831640983459, 5.15001042953062242598215759735, 5.90476097721614497350608423708, 6.47519708327060828525786747249, 7.201771325729046953643130600064, 8.11399298733383512190787188539, 8.504405574542548237448277105068, 9.065418217183053400988837530197, 10.0633685098150449508492950255, 10.84183934155340987717471565556, 11.7316516185935357652717329255, 12.580238680225495516189602892966, 13.13580438040998956889065695645, 13.94033452622944394676954222186, 14.74625026478654641314763545906, 15.24722301263520535283240388475, 15.724801598276627407213438488895, 16.9598359747240196506165404757, 17.48570864452966824605727482588, 17.906975653743019231787768338316, 18.77771197647297000405407890146