L(s) = 1 | + (−0.755 − 0.654i)2-s + (0.587 + 0.809i)3-s + (0.142 + 0.989i)4-s + (0.0855 − 0.996i)6-s + (−0.825 − 0.564i)7-s + (0.540 − 0.841i)8-s + (−0.309 + 0.951i)9-s + (−0.717 + 0.696i)12-s + (−0.170 + 0.985i)13-s + (0.254 + 0.967i)14-s + (−0.959 + 0.281i)16-s + (−0.980 + 0.198i)17-s + (0.856 − 0.516i)18-s + (−0.415 − 0.909i)19-s + (−0.0285 − 0.999i)21-s + ⋯ |
L(s) = 1 | + (−0.755 − 0.654i)2-s + (0.587 + 0.809i)3-s + (0.142 + 0.989i)4-s + (0.0855 − 0.996i)6-s + (−0.825 − 0.564i)7-s + (0.540 − 0.841i)8-s + (−0.309 + 0.951i)9-s + (−0.717 + 0.696i)12-s + (−0.170 + 0.985i)13-s + (0.254 + 0.967i)14-s + (−0.959 + 0.281i)16-s + (−0.980 + 0.198i)17-s + (0.856 − 0.516i)18-s + (−0.415 − 0.909i)19-s + (−0.0285 − 0.999i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.106 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.106 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4906842862 + 0.4408154911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4906842862 + 0.4408154911i\) |
\(L(1)\) |
\(\approx\) |
\(0.6877140329 + 0.009004629804i\) |
\(L(1)\) |
\(\approx\) |
\(0.6877140329 + 0.009004629804i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.755 - 0.654i)T \) |
| 3 | \( 1 + (0.587 + 0.809i)T \) |
| 7 | \( 1 + (-0.825 - 0.564i)T \) |
| 13 | \( 1 + (-0.170 + 0.985i)T \) |
| 17 | \( 1 + (-0.980 + 0.198i)T \) |
| 19 | \( 1 + (-0.415 - 0.909i)T \) |
| 23 | \( 1 + (0.336 - 0.941i)T \) |
| 29 | \( 1 + (-0.415 - 0.909i)T \) |
| 31 | \( 1 + (-0.985 + 0.170i)T \) |
| 37 | \( 1 + (-0.170 - 0.985i)T \) |
| 41 | \( 1 + (0.974 - 0.226i)T \) |
| 43 | \( 1 + (0.540 - 0.841i)T \) |
| 47 | \( 1 + (-0.226 + 0.974i)T \) |
| 53 | \( 1 + (0.791 - 0.610i)T \) |
| 59 | \( 1 + (-0.516 + 0.856i)T \) |
| 61 | \( 1 + (0.516 - 0.856i)T \) |
| 67 | \( 1 + (-0.856 + 0.516i)T \) |
| 71 | \( 1 + (0.993 - 0.113i)T \) |
| 73 | \( 1 + (-0.791 - 0.610i)T \) |
| 79 | \( 1 + (0.998 + 0.0570i)T \) |
| 83 | \( 1 + (-0.336 - 0.941i)T \) |
| 89 | \( 1 + (0.870 - 0.491i)T \) |
| 97 | \( 1 + (0.931 - 0.362i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.58474900054787266513020126562, −18.13526081274252219133745054026, −17.48206309152684882471759108201, −16.66013985203698056217477147400, −15.9084381466276970974489778160, −15.11473922614073440081012590294, −14.82953361258806652831367020362, −13.82508715790080937734533194815, −13.106203918609745905147314123170, −12.580939350729881388788275944700, −11.62356934285874921483930933028, −10.75986686997300634410356187452, −9.86795815216953370414182982463, −9.2060897699859283563594233667, −8.68075019447391841310417432899, −7.87545850131875495882832971422, −7.267310733643508742937422879518, −6.51750388669431141128288190924, −5.883924141141465452439464030289, −5.18279684193254428430902951889, −3.78287647506280412966009778480, −2.8761947616592829912195474690, −2.10563191237390159203563490814, −1.22051165060064628073572457735, −0.19630402899098638899560233287,
0.57657996452608637214164689448, 2.06810014055384579858712581540, 2.47522749788658069957826707472, 3.50264006006933758117498260046, 4.14745801613068343736803834929, 4.66957760030381023567720763417, 6.13940741070899681603905256184, 7.02260563253988182430561335887, 7.58750894917420956257843658959, 8.741131991652658805047419186609, 9.09915649628595882406158177639, 9.62557853076450715178060991932, 10.67396766033104829308832793780, 10.8038622402141014141960661704, 11.74984105506367388553950636632, 12.81647600639170032564618623919, 13.26244888513175946529389531316, 14.06119357358967293172552860860, 14.90769496859089143305352669949, 15.89050287631943141707630492915, 16.194872559672786144735939005987, 17.018871671637884373399191767789, 17.48589617508514920913437936680, 18.60465519274642859469348420317, 19.268396698146321949841834140911