L(s) = 1 | + (−0.755 + 0.654i)2-s + (−0.951 + 0.309i)3-s + (0.142 − 0.989i)4-s + (0.516 − 0.856i)6-s + (−0.791 − 0.610i)7-s + (0.540 + 0.841i)8-s + (0.809 − 0.587i)9-s + (0.170 + 0.985i)12-s + (0.884 − 0.466i)13-s + (0.998 − 0.0570i)14-s + (−0.959 − 0.281i)16-s + (0.676 + 0.736i)17-s + (−0.226 + 0.974i)18-s + (−0.415 + 0.909i)19-s + (0.941 + 0.336i)21-s + ⋯ |
L(s) = 1 | + (−0.755 + 0.654i)2-s + (−0.951 + 0.309i)3-s + (0.142 − 0.989i)4-s + (0.516 − 0.856i)6-s + (−0.791 − 0.610i)7-s + (0.540 + 0.841i)8-s + (0.809 − 0.587i)9-s + (0.170 + 0.985i)12-s + (0.884 − 0.466i)13-s + (0.998 − 0.0570i)14-s + (−0.959 − 0.281i)16-s + (0.676 + 0.736i)17-s + (−0.226 + 0.974i)18-s + (−0.415 + 0.909i)19-s + (0.941 + 0.336i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.442 - 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.442 - 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.07718803587 + 0.1241793803i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.07718803587 + 0.1241793803i\) |
\(L(1)\) |
\(\approx\) |
\(0.4439107731 + 0.1813008141i\) |
\(L(1)\) |
\(\approx\) |
\(0.4439107731 + 0.1813008141i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.755 + 0.654i)T \) |
| 3 | \( 1 + (-0.951 + 0.309i)T \) |
| 7 | \( 1 + (-0.791 - 0.610i)T \) |
| 13 | \( 1 + (0.884 - 0.466i)T \) |
| 17 | \( 1 + (0.676 + 0.736i)T \) |
| 19 | \( 1 + (-0.415 + 0.909i)T \) |
| 23 | \( 1 + (-0.825 - 0.564i)T \) |
| 29 | \( 1 + (-0.415 + 0.909i)T \) |
| 31 | \( 1 + (-0.466 + 0.884i)T \) |
| 37 | \( 1 + (0.884 + 0.466i)T \) |
| 41 | \( 1 + (-0.921 + 0.389i)T \) |
| 43 | \( 1 + (0.540 + 0.841i)T \) |
| 47 | \( 1 + (-0.389 + 0.921i)T \) |
| 53 | \( 1 + (-0.999 - 0.0285i)T \) |
| 59 | \( 1 + (-0.974 + 0.226i)T \) |
| 61 | \( 1 + (0.974 - 0.226i)T \) |
| 67 | \( 1 + (0.226 - 0.974i)T \) |
| 71 | \( 1 + (0.198 + 0.980i)T \) |
| 73 | \( 1 + (0.999 - 0.0285i)T \) |
| 79 | \( 1 + (-0.774 + 0.633i)T \) |
| 83 | \( 1 + (0.825 - 0.564i)T \) |
| 89 | \( 1 + (-0.993 + 0.113i)T \) |
| 97 | \( 1 + (-0.967 + 0.254i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.48587539863336020717648935852, −17.88543867714240009732577817070, −17.06028729900491063912026002417, −16.48981288506200782088798346777, −15.8812845700975412622887045264, −15.306880873299616784048024889784, −13.77272529506313142660162646944, −13.25139951716138168063300131568, −12.56698279246030197572662335390, −11.816642395684357076454806736, −11.415500386938069840983789070267, −10.686821361963887071822936404635, −9.74418209996618532096173253724, −9.395614363638204649901602564582, −8.42480169480544304970739322568, −7.58429348742053352211698475172, −6.843056916985428559640136704399, −6.14107228274584713351634460510, −5.390629398117012195369059238000, −4.23929502240887965293039715612, −3.53168512672588870471867814463, −2.436534734901775874652644428297, −1.77937233479927135097015444840, −0.64363554038284343996829715985, −0.05921642802049047316102446470,
1.01101467563018178888449804072, 1.59869071176945958976260914413, 3.230109754359945150170973469391, 4.01610393616856353125357789941, 4.92538856869556383725687607335, 5.94805874856438626311112609411, 6.175089509275762155498615156676, 6.94951587791043990530703564661, 7.86029804170822860237954736616, 8.50313311781747818339031580619, 9.63414488493931633222473816270, 9.99698269165226033998577096060, 10.77833352201360414794380939171, 11.118284539467094328376454656598, 12.42594344101288634176547834587, 12.812136032469739167200035507893, 13.91513609272760492147235803654, 14.647466064292432624029703201463, 15.421811508116809066387224107825, 16.28032725571532412995315113118, 16.409324905807524250878836971899, 17.126997112008051808757063786038, 17.88218384347623983103658799040, 18.50088979270318271280421433232, 19.04877055250682456484614791728