L(s) = 1 | + (−0.336 + 0.941i)2-s + (0.587 − 0.809i)3-s + (−0.774 − 0.633i)4-s + (0.564 + 0.825i)6-s + (0.113 + 0.993i)7-s + (0.856 − 0.516i)8-s + (−0.309 − 0.951i)9-s + (−0.967 + 0.254i)12-s + (0.633 − 0.774i)13-s + (−0.974 − 0.226i)14-s + (0.198 + 0.980i)16-s + (−0.170 − 0.985i)17-s + (0.999 + 0.0285i)18-s + (−0.985 − 0.170i)19-s + (0.870 + 0.491i)21-s + ⋯ |
L(s) = 1 | + (−0.336 + 0.941i)2-s + (0.587 − 0.809i)3-s + (−0.774 − 0.633i)4-s + (0.564 + 0.825i)6-s + (0.113 + 0.993i)7-s + (0.856 − 0.516i)8-s + (−0.309 − 0.951i)9-s + (−0.967 + 0.254i)12-s + (0.633 − 0.774i)13-s + (−0.974 − 0.226i)14-s + (0.198 + 0.980i)16-s + (−0.170 − 0.985i)17-s + (0.999 + 0.0285i)18-s + (−0.985 − 0.170i)19-s + (0.870 + 0.491i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.847 - 0.530i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.847 - 0.530i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.427852649 - 0.4100097373i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.427852649 - 0.4100097373i\) |
\(L(1)\) |
\(\approx\) |
\(1.026371925 + 0.07124733634i\) |
\(L(1)\) |
\(\approx\) |
\(1.026371925 + 0.07124733634i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.336 + 0.941i)T \) |
| 3 | \( 1 + (0.587 - 0.809i)T \) |
| 7 | \( 1 + (0.113 + 0.993i)T \) |
| 13 | \( 1 + (0.633 - 0.774i)T \) |
| 17 | \( 1 + (-0.170 - 0.985i)T \) |
| 19 | \( 1 + (-0.985 - 0.170i)T \) |
| 23 | \( 1 + (-0.113 + 0.993i)T \) |
| 29 | \( 1 + (0.897 - 0.441i)T \) |
| 31 | \( 1 + (0.841 + 0.540i)T \) |
| 37 | \( 1 + (-0.931 + 0.362i)T \) |
| 41 | \( 1 + (0.959 - 0.281i)T \) |
| 43 | \( 1 + (0.755 + 0.654i)T \) |
| 47 | \( 1 + (0.791 - 0.610i)T \) |
| 53 | \( 1 + (0.113 + 0.993i)T \) |
| 59 | \( 1 + (-0.610 - 0.791i)T \) |
| 61 | \( 1 + (0.564 - 0.825i)T \) |
| 67 | \( 1 + (0.336 - 0.941i)T \) |
| 71 | \( 1 + (-0.142 - 0.989i)T \) |
| 73 | \( 1 + (-0.909 - 0.415i)T \) |
| 79 | \( 1 + (-0.921 + 0.389i)T \) |
| 83 | \( 1 + (0.676 + 0.736i)T \) |
| 89 | \( 1 + (0.985 - 0.170i)T \) |
| 97 | \( 1 + (0.856 - 0.516i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.24556820689578882316833609219, −18.78188142459929858410609683955, −17.553863583765595615946455938872, −17.17718485678820525697165661772, −16.37564211788080069716356473798, −15.81596073299555148638106727710, −14.529121256727324962938591037110, −14.301509874147650337062128669617, −13.40991243637943747674053497140, −12.88521129620954639289729024551, −11.88579941971915418166233583083, −11.02767750158783290629428459162, −10.42513681388154362965053030882, −10.20392227068510233462030429986, −9.051482002229779080879141462344, −8.612683425824181777520456609246, −7.97539682357764837998067643300, −7.01612284570602078929477407156, −5.97131654379617071832134889240, −4.67420589906488922813400227761, −4.165299193791777919504227441167, −3.77371372061561882425822763225, −2.69497655387046699428633591555, −1.96930496638972630317083820266, −0.97684990434720063811836113604,
0.55752604292587168243465250718, 1.55074781381145278482303290674, 2.50595144528942216999626425551, 3.34113095388287018404706297619, 4.48803200469412260577379058358, 5.39273203670596584840113585713, 6.122044868715427274462719944368, 6.656147622577650054502474598876, 7.61539417484258386179383491322, 8.13151133245015639020299680701, 8.85465882656263868697858811415, 9.274446882947422860330913893501, 10.24310907329096326338463437322, 11.21039522940868757124524013183, 12.16246058250276982975736606130, 12.77064780579485780091114540278, 13.64058575834303805760190181135, 14.02084287470857260167327947417, 14.91452717977490400354883020539, 15.6468774017913047021417213719, 15.77874386914770609139871971000, 17.15166348870014322196073572399, 17.7215132733165724590718761925, 18.151773481768261420964460938811, 18.953772753620895247819807650573