| L(s)  = 1 | + (0.0285 − 0.999i)2-s   + (−0.309 + 0.951i)3-s   + (−0.998 − 0.0570i)4-s     + (0.941 + 0.336i)6-s   + (0.870 + 0.491i)7-s   + (−0.0855 + 0.996i)8-s   + (−0.809 − 0.587i)9-s       + (0.362 − 0.931i)12-s   + (0.998 + 0.0570i)13-s   + (0.516 − 0.856i)14-s     + (0.993 + 0.113i)16-s   + (−0.696 + 0.717i)17-s   + (−0.610 + 0.791i)18-s   + (0.696 + 0.717i)19-s     + (−0.736 + 0.676i)21-s    + ⋯ | 
| L(s)  = 1 | + (0.0285 − 0.999i)2-s   + (−0.309 + 0.951i)3-s   + (−0.998 − 0.0570i)4-s     + (0.941 + 0.336i)6-s   + (0.870 + 0.491i)7-s   + (−0.0855 + 0.996i)8-s   + (−0.809 − 0.587i)9-s       + (0.362 − 0.931i)12-s   + (0.998 + 0.0570i)13-s   + (0.516 − 0.856i)14-s     + (0.993 + 0.113i)16-s   + (−0.696 + 0.717i)17-s   + (−0.610 + 0.791i)18-s   + (0.696 + 0.717i)19-s     + (−0.736 + 0.676i)21-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.724 + 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.724 + 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.400877773 + 0.5597018078i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.400877773 + 0.5597018078i\) | 
    
        
      | \(L(1)\) | \(\approx\) | \(1.016851136 + 0.005389854320i\) | 
    
      | \(L(1)\) | \(\approx\) | \(1.016851136 + 0.005389854320i\) | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 5 | \( 1 \) | 
|  | 11 | \( 1 \) | 
| good | 2 | \( 1 + (0.0285 - 0.999i)T \) | 
|  | 3 | \( 1 + (-0.309 + 0.951i)T \) | 
|  | 7 | \( 1 + (0.870 + 0.491i)T \) | 
|  | 13 | \( 1 + (0.998 + 0.0570i)T \) | 
|  | 17 | \( 1 + (-0.696 + 0.717i)T \) | 
|  | 19 | \( 1 + (0.696 + 0.717i)T \) | 
|  | 23 | \( 1 + (0.870 - 0.491i)T \) | 
|  | 29 | \( 1 + (-0.466 + 0.884i)T \) | 
|  | 31 | \( 1 + (0.841 + 0.540i)T \) | 
|  | 37 | \( 1 + (-0.774 + 0.633i)T \) | 
|  | 41 | \( 1 + (-0.959 + 0.281i)T \) | 
|  | 43 | \( 1 + (0.654 - 0.755i)T \) | 
|  | 47 | \( 1 + (0.564 - 0.825i)T \) | 
|  | 53 | \( 1 + (0.870 + 0.491i)T \) | 
|  | 59 | \( 1 + (-0.564 + 0.825i)T \) | 
|  | 61 | \( 1 + (0.941 - 0.336i)T \) | 
|  | 67 | \( 1 + (0.0285 - 0.999i)T \) | 
|  | 71 | \( 1 + (-0.142 - 0.989i)T \) | 
|  | 73 | \( 1 + (-0.415 + 0.909i)T \) | 
|  | 79 | \( 1 + (0.974 + 0.226i)T \) | 
|  | 83 | \( 1 + (-0.198 + 0.980i)T \) | 
|  | 89 | \( 1 + (0.696 - 0.717i)T \) | 
|  | 97 | \( 1 + (-0.0855 + 0.996i)T \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−18.7819354796061676494726272896, −17.98456450959405296755560112322, −17.56681386461437517496383524931, −17.11674417265107327102485411804, −16.1516143814647491724248706152, −15.5761744766564899181289352594, −14.71858851970993726802379030023, −13.89206765984611727938818812604, −13.484543200535867744909964997213, −13.02814017350838845900979848531, −11.83302074954652642665378644228, −11.332701947244230677695398298276, −10.55374785812153822667099708921, −9.37378742917389171615347593085, −8.69009315705379881986511208085, −7.983502289792009588491743754689, −7.32041937582173305337381770419, −6.82718002615464512458853175319, −5.961075469684756610902833490209, −5.24771503954162599243175648814, −4.58541399621224635100632904517, −3.608654208843440997316175449618, −2.46773182891360341293776943088, −1.283406118168690589693014719565, −0.610241076928878274538563453803, 
1.03022812256756361862895809026, 1.84764788410841941656583778012, 2.91121216571029693554591811582, 3.65154571018803134787206137120, 4.341623714211843901692415974592, 5.15568300861750617457959113605, 5.622378221843156837967186654728, 6.651782115740334084349410072316, 8.07123837778970503174464734668, 8.7546445000165870503828781568, 9.04038331076136958828730746757, 10.20150084319970438987928817178, 10.65153155294152878257058296935, 11.23948523679722888343647026861, 11.92771817877109543325738701203, 12.493484926876091804043691897666, 13.60190165582343027732839608004, 14.11218720654654056689481537537, 15.0516839449192289407164818981, 15.389125016851650169635651789094, 16.49192324754730524131273834315, 17.13818860344097013603206565464, 17.87388190878675823027167240149, 18.41807511027989872780188456402, 19.11514859712075992424391330332
