L(s) = 1 | + (−0.998 − 0.0570i)2-s + (0.809 + 0.587i)3-s + (0.993 + 0.113i)4-s + (−0.774 − 0.633i)6-s + (0.516 + 0.856i)7-s + (−0.985 − 0.170i)8-s + (0.309 + 0.951i)9-s + (0.736 + 0.676i)12-s + (0.993 + 0.113i)13-s + (−0.466 − 0.884i)14-s + (0.974 + 0.226i)16-s + (−0.0285 − 0.999i)17-s + (−0.254 − 0.967i)18-s + (0.0285 − 0.999i)19-s + (−0.0855 + 0.996i)21-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.0570i)2-s + (0.809 + 0.587i)3-s + (0.993 + 0.113i)4-s + (−0.774 − 0.633i)6-s + (0.516 + 0.856i)7-s + (−0.985 − 0.170i)8-s + (0.309 + 0.951i)9-s + (0.736 + 0.676i)12-s + (0.993 + 0.113i)13-s + (−0.466 − 0.884i)14-s + (0.974 + 0.226i)16-s + (−0.0285 − 0.999i)17-s + (−0.254 − 0.967i)18-s + (0.0285 − 0.999i)19-s + (−0.0855 + 0.996i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.00675i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.00675i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.004379029967 + 1.297383628i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.004379029967 + 1.297383628i\) |
\(L(1)\) |
\(\approx\) |
\(0.8739742389 + 0.3734560000i\) |
\(L(1)\) |
\(\approx\) |
\(0.8739742389 + 0.3734560000i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.998 - 0.0570i)T \) |
| 3 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 + (0.516 + 0.856i)T \) |
| 13 | \( 1 + (0.993 + 0.113i)T \) |
| 17 | \( 1 + (-0.0285 - 0.999i)T \) |
| 19 | \( 1 + (0.0285 - 0.999i)T \) |
| 23 | \( 1 + (-0.516 + 0.856i)T \) |
| 29 | \( 1 + (0.564 + 0.825i)T \) |
| 31 | \( 1 + (0.415 + 0.909i)T \) |
| 37 | \( 1 + (-0.198 + 0.980i)T \) |
| 41 | \( 1 + (-0.841 + 0.540i)T \) |
| 43 | \( 1 + (-0.142 - 0.989i)T \) |
| 47 | \( 1 + (0.362 + 0.931i)T \) |
| 53 | \( 1 + (-0.516 - 0.856i)T \) |
| 59 | \( 1 + (-0.362 - 0.931i)T \) |
| 61 | \( 1 + (-0.774 + 0.633i)T \) |
| 67 | \( 1 + (0.998 + 0.0570i)T \) |
| 71 | \( 1 + (-0.959 + 0.281i)T \) |
| 73 | \( 1 + (-0.654 - 0.755i)T \) |
| 79 | \( 1 + (-0.897 - 0.441i)T \) |
| 83 | \( 1 + (-0.921 - 0.389i)T \) |
| 89 | \( 1 + (-0.0285 - 0.999i)T \) |
| 97 | \( 1 + (0.985 + 0.170i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.58868132798610656443901097261, −17.94356427562228817104187212117, −17.246950954721262036739448571423, −16.64063602158578795177805229913, −15.73680456656044045351260315584, −15.072391821365525523083823753322, −14.33459842104236603735022347605, −13.7472285064632315402031240193, −12.86193192616381609090434677619, −12.12411851363420345130518995284, −11.32522543032928771294027606761, −10.44398504521580918614984504175, −10.04865404854413488569656542273, −9.02297623505894799594637287573, −8.20835343311813595645700715031, −8.05827180754542952216447039193, −7.194523557591143710159207576843, −6.35749269721032457103280535167, −5.845726796506205226661510896973, −4.21142505228997827541954799326, −3.664795006357534250168240616631, −2.61023481451944257076224614352, −1.721834202552420942420214917163, −1.18741099988056461012591668218, −0.24024584442300890415809099442,
1.23212722177625190222146439901, 1.907269587509957868964514911659, 2.91408430885154733666915420988, 3.29288704665622917101418989882, 4.61947319434202981507952327112, 5.31422779514977906076121395688, 6.35213080669385731250618989955, 7.20771732725912249295269911747, 7.99384698410660552490607080907, 8.77589384137043050332491379652, 8.949335697392289879436680563528, 9.852152282186752625498805913215, 10.531169376560855593066356439414, 11.39970707465803076181122020094, 11.774047051030728766217445871275, 12.88788036076332641707410087652, 13.79787224710420767244684614878, 14.42437186043708414805166218428, 15.41142734688484158752941210355, 15.71474779668185728669343916666, 16.20625389493904356394607128204, 17.27575387168963794575923310725, 17.94444706264504079982654717052, 18.585223089602892321785618941078, 19.121412078378003420731800637094