| L(s) = 1 | + (−0.736 + 0.676i)2-s + (0.309 + 0.951i)3-s + (0.0855 − 0.996i)4-s + (−0.870 − 0.491i)6-s + (0.696 − 0.717i)7-s + (0.610 + 0.791i)8-s + (−0.809 + 0.587i)9-s + (0.974 − 0.226i)12-s + (0.0855 − 0.996i)13-s + (−0.0285 + 0.999i)14-s + (−0.985 − 0.170i)16-s + (−0.362 + 0.931i)17-s + (0.198 − 0.980i)18-s + (−0.362 − 0.931i)19-s + (0.897 + 0.441i)21-s + ⋯ |
| L(s) = 1 | + (−0.736 + 0.676i)2-s + (0.309 + 0.951i)3-s + (0.0855 − 0.996i)4-s + (−0.870 − 0.491i)6-s + (0.696 − 0.717i)7-s + (0.610 + 0.791i)8-s + (−0.809 + 0.587i)9-s + (0.974 − 0.226i)12-s + (0.0855 − 0.996i)13-s + (−0.0285 + 0.999i)14-s + (−0.985 − 0.170i)16-s + (−0.362 + 0.931i)17-s + (0.198 − 0.980i)18-s + (−0.362 − 0.931i)19-s + (0.897 + 0.441i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3025 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.054808486 + 0.001095464390i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.054808486 + 0.001095464390i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7715437433 + 0.2834274498i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7715437433 + 0.2834274498i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.736 + 0.676i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + (0.696 - 0.717i)T \) |
| 13 | \( 1 + (0.0855 - 0.996i)T \) |
| 17 | \( 1 + (-0.362 + 0.931i)T \) |
| 19 | \( 1 + (-0.362 - 0.931i)T \) |
| 23 | \( 1 + (0.696 + 0.717i)T \) |
| 29 | \( 1 + (-0.998 + 0.0570i)T \) |
| 31 | \( 1 + (-0.654 - 0.755i)T \) |
| 37 | \( 1 + (0.516 - 0.856i)T \) |
| 41 | \( 1 + (0.415 + 0.909i)T \) |
| 43 | \( 1 + (-0.959 - 0.281i)T \) |
| 47 | \( 1 + (0.993 + 0.113i)T \) |
| 53 | \( 1 + (0.696 - 0.717i)T \) |
| 59 | \( 1 + (0.993 + 0.113i)T \) |
| 61 | \( 1 + (-0.870 + 0.491i)T \) |
| 67 | \( 1 + (-0.736 + 0.676i)T \) |
| 71 | \( 1 + (0.841 + 0.540i)T \) |
| 73 | \( 1 + (-0.142 - 0.989i)T \) |
| 79 | \( 1 + (0.941 + 0.336i)T \) |
| 83 | \( 1 + (-0.466 - 0.884i)T \) |
| 89 | \( 1 + (-0.362 + 0.931i)T \) |
| 97 | \( 1 + (0.610 + 0.791i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.80691643935500745357971240977, −18.471964996487389501238204961519, −18.07120971564956517987549443319, −17.0136254639926377535217765841, −16.6823307531268562260758387336, −15.59058580851010215585690503894, −14.7043881886327206961448081955, −14.033844374793172678902861018530, −13.286285582302162359633659401346, −12.46275964809161245491481556083, −11.98365169190926829265941393647, −11.34783350964357759564536005908, −10.72526705294961441974716486801, −9.53122899075329290578362014246, −8.93363652483192364150808840050, −8.48108434909864779159832202862, −7.63164399380874051532840788091, −7.01987032781772368025895477467, −6.2292202485358212304415565470, −5.14934038043961404642375772537, −4.15637621427110628293884153383, −3.18881774713979624244658045207, −2.30237204229920608712286513956, −1.8572952397142574479242430463, −0.9715555374686580835983572224,
0.4458383460226268770058365992, 1.63179729267650194624051059500, 2.57357227425989622868788489336, 3.75039382734708587099147610157, 4.43782296621671153249699432517, 5.31024616512110199404143605326, 5.81604474962752641640612808469, 6.98706217258706789863926227823, 7.69305645533125068861661045069, 8.30415233612963097229198061681, 9.01101710382141125492803760151, 9.675635127729443661745005851538, 10.53544705750375026940021304771, 10.92221944076989743839793777153, 11.48126437823546939248359998308, 13.10503116057146078072771502257, 13.51416694279391007367115896480, 14.5908598570939783018246050340, 15.031645055796225833808768007948, 15.38093129795657969606449368490, 16.4256592136591886415669380804, 16.88535165031743380915790125859, 17.56638374073421641080751676351, 18.033534762444561541721527386316, 19.165993100085281392094440730266