L(s) = 1 | + (0.984 − 0.173i)5-s + (0.939 + 0.342i)7-s − i·11-s + (0.642 + 0.766i)13-s + (−0.939 + 0.342i)17-s + (−0.984 + 0.173i)19-s − 23-s + (0.939 − 0.342i)25-s + i·29-s + (−0.5 + 0.866i)31-s + (0.984 + 0.173i)35-s + (−0.766 + 0.642i)41-s + (−0.866 + 0.5i)43-s + (−0.5 + 0.866i)47-s + (0.766 + 0.642i)49-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)5-s + (0.939 + 0.342i)7-s − i·11-s + (0.642 + 0.766i)13-s + (−0.939 + 0.342i)17-s + (−0.984 + 0.173i)19-s − 23-s + (0.939 − 0.342i)25-s + i·29-s + (−0.5 + 0.866i)31-s + (0.984 + 0.173i)35-s + (−0.766 + 0.642i)41-s + (−0.866 + 0.5i)43-s + (−0.5 + 0.866i)47-s + (0.766 + 0.642i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.320 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.320 + 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8858385642 + 1.235433353i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8858385642 + 1.235433353i\) |
\(L(1)\) |
\(\approx\) |
\(1.186431319 + 0.1784565978i\) |
\(L(1)\) |
\(\approx\) |
\(1.186431319 + 0.1784565978i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
good | 5 | \( 1 + (0.984 - 0.173i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 - iT \) |
| 13 | \( 1 + (0.642 + 0.766i)T \) |
| 17 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.984 + 0.173i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + iT \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.766 + 0.642i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.642 - 0.766i)T \) |
| 59 | \( 1 + (0.342 + 0.939i)T \) |
| 61 | \( 1 + (-0.984 + 0.173i)T \) |
| 67 | \( 1 + (-0.984 + 0.173i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 + (-0.642 + 0.766i)T \) |
| 89 | \( 1 + (-0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.807855853038287755435694722673, −17.19351182709147668949698752878, −16.6726846366591042734562961816, −15.41342883963751499095444770176, −15.21891018740661394277034524693, −14.40113157341375185911541948418, −13.654882676698482191263702768310, −13.26770167458461362858645386805, −12.51835716555732945073187303394, −11.59900287188520096905609377508, −11.0130051647179781938272738501, −10.20548738877019812271490666260, −9.92976209713533541505759868406, −8.835386990623098909384715484760, −8.381476104471846433160752165359, −7.4590647701717415483582457731, −6.84478110378343920336157303716, −6.01700415527513616118196938040, −5.421598577750961450341771037, −4.526403936065891202576743047782, −4.06194234075563307855673515861, −2.864035945735933319853196473859, −1.91633964667538796923613217399, −1.76440306296840585297303604443, −0.33222759782964752170409211809,
1.378240673529856065582006119, 1.70088277988395890600124046911, 2.55886121391897692995643748069, 3.52238115496837448932052631853, 4.45545288124630555250599432587, 5.01526235735865499998828685745, 6.01864391778933650382622885249, 6.22557278929706780091463072392, 7.156561199539413731033058519380, 8.34439141477435352833617864441, 8.63274343191236966005421363184, 9.14953816656636972012421675784, 10.236075954646969479286565548081, 10.756837537067240637311966009083, 11.39187860521520085825018184598, 12.06749568969233840833212184405, 13.038396018789411603710841353795, 13.44826032232709312417360490400, 14.27071803541749877085444425371, 14.57008738113327543824768352635, 15.485652970914448036035548969402, 16.40287844331335422351741274471, 16.674299791736878376961160026630, 17.62679067270267381087347849415, 18.112522992978394001566736906950