| L(s) = 1 | + (−0.342 + 0.939i)5-s + (−0.173 − 0.984i)7-s + (−0.866 + 0.5i)11-s + (−0.984 + 0.173i)13-s + (−0.939 + 0.342i)17-s + (−0.984 + 0.173i)19-s + (0.5 − 0.866i)23-s + (−0.766 − 0.642i)25-s + (0.866 − 0.5i)29-s + (−0.5 − 0.866i)31-s + (0.984 + 0.173i)35-s + (−0.173 − 0.984i)41-s + (0.866 + 0.5i)43-s + 47-s + (−0.939 + 0.342i)49-s + ⋯ |
| L(s) = 1 | + (−0.342 + 0.939i)5-s + (−0.173 − 0.984i)7-s + (−0.866 + 0.5i)11-s + (−0.984 + 0.173i)13-s + (−0.939 + 0.342i)17-s + (−0.984 + 0.173i)19-s + (0.5 − 0.866i)23-s + (−0.766 − 0.642i)25-s + (0.866 − 0.5i)29-s + (−0.5 − 0.866i)31-s + (0.984 + 0.173i)35-s + (−0.173 − 0.984i)41-s + (0.866 + 0.5i)43-s + 47-s + (−0.939 + 0.342i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.362 + 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.362 + 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5714974331 + 0.3907043180i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5714974331 + 0.3907043180i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7459048934 + 0.05600970781i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7459048934 + 0.05600970781i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
| good | 5 | \( 1 + (-0.342 + 0.939i)T \) |
| 7 | \( 1 + (-0.173 - 0.984i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.984 + 0.173i)T \) |
| 17 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (-0.984 + 0.173i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.642 - 0.766i)T \) |
| 59 | \( 1 + (-0.984 - 0.173i)T \) |
| 61 | \( 1 + (0.642 + 0.766i)T \) |
| 67 | \( 1 + (0.342 - 0.939i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.984 + 0.173i)T \) |
| 89 | \( 1 + (-0.766 - 0.642i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.64369979309547145418284804521, −17.27471444587269024610524227995, −16.29785608739476768751380589006, −15.84454256592479358471677779463, −15.318305422647837517850791608615, −14.66516437780758330570199524494, −13.64545051873152810224401405454, −13.04617037024082864156639235006, −12.4871902588746298730427521899, −11.967448614019384732778644902297, −11.16584892339910928787557398025, −10.49051726513322873775733945844, −9.55671225872508437894228191323, −8.88817449056836178722783662412, −8.54011379825054901166934551281, −7.69168414573376457022757380739, −6.9736738625735600928458034641, −6.01881380008580464829687948459, −5.26220512373400033198146029370, −4.88515668383365919364546553977, −4.032025213350358369452899483186, −2.9180981368055737375187443279, −2.45663264106775460796316265860, −1.45491454649130667748370666169, −0.2844610461275196274581932604,
0.58754975220545278369372654305, 2.1969820346351017350397254468, 2.40903309305183183189633569612, 3.46842632867580754816502025968, 4.33329942804839222368734756273, 4.63959062721362738537434309101, 5.874788350577972767159823597862, 6.63939767320053494499952805715, 7.16445564809919635177594156178, 7.713779858509208195017062290312, 8.46868531797855320917223002529, 9.455507642777090357515585928928, 10.263151039638699496736875637929, 10.605151280629222625899566153815, 11.15430771468873738147136618902, 12.1365881529721822216726270574, 12.75574782783678400921619486370, 13.4334149457201286972896776093, 14.15247288037679184378889105037, 14.83167642010395684257226085515, 15.29005905749486224587525766740, 16.0022732237827310293538027685, 16.88851695131350432806945722112, 17.365617267657196266427749415695, 18.02590841320266079424066966432