| L(s) = 1 | + (−0.766 + 0.642i)5-s + (0.939 + 0.342i)7-s + (−0.866 + 0.5i)11-s + (−0.939 − 0.342i)13-s + (−0.642 + 0.766i)17-s + (−0.939 − 0.342i)19-s + (0.866 + 0.5i)23-s + (0.173 − 0.984i)25-s + (0.5 + 0.866i)29-s + (−0.866 + 0.5i)31-s + (−0.939 + 0.342i)35-s + (−0.939 − 0.342i)41-s + (0.5 − 0.866i)43-s + 47-s + (0.766 + 0.642i)49-s + ⋯ |
| L(s) = 1 | + (−0.766 + 0.642i)5-s + (0.939 + 0.342i)7-s + (−0.866 + 0.5i)11-s + (−0.939 − 0.342i)13-s + (−0.642 + 0.766i)17-s + (−0.939 − 0.342i)19-s + (0.866 + 0.5i)23-s + (0.173 − 0.984i)25-s + (0.5 + 0.866i)29-s + (−0.866 + 0.5i)31-s + (−0.939 + 0.342i)35-s + (−0.939 − 0.342i)41-s + (0.5 − 0.866i)43-s + 47-s + (0.766 + 0.642i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5328 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4743504971 + 1.263982871i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4743504971 + 1.263982871i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8533658492 + 0.2527953824i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8533658492 + 0.2527953824i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 \) |
| good | 5 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.939 - 0.342i)T \) |
| 17 | \( 1 + (-0.642 + 0.766i)T \) |
| 19 | \( 1 + (-0.939 - 0.342i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.984 + 0.173i)T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (-0.173 - 0.984i)T \) |
| 67 | \( 1 + (0.642 + 0.766i)T \) |
| 71 | \( 1 + (0.939 + 0.342i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.342 - 0.939i)T \) |
| 83 | \( 1 + (0.342 + 0.939i)T \) |
| 89 | \( 1 + (0.984 + 0.173i)T \) |
| 97 | \( 1 + iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.38478238743333164370906348318, −16.769612511089452959444072119499, −16.36995448989357658368523502170, −15.36674473116128278729736823503, −15.05065615387094231090554104271, −14.22536461010383158402189375410, −13.47169348634413741294091806144, −12.86731748613608084976021316525, −12.12968709963745391852534727453, −11.460156486061858427390246951893, −10.956527456402690285904739491294, −10.2414081048085468349309242659, −9.27793166614936870225928864118, −8.60246095131810057729915652045, −8.03554393147165063018392931096, −7.42759778991392481746198919364, −6.76831398509042519185148090036, −5.63267894455439967699367775874, −4.901384228281182179221012436158, −4.50514024222371305421891781534, −3.75512519532427754135023354546, −2.62638417199340613140610943529, −2.03656928260631870478788030422, −0.826942651681074357881072365880, −0.2939274250436352826238888078,
0.725480299176037561517070269420, 2.07751247757377608029373305687, 2.38139278222001752025360019468, 3.40470183858108415984195020463, 4.1950702331432607341816314671, 5.0127334848518156848126563388, 5.40159641463325661934889862860, 6.67576591167426013537093581826, 7.14813408736476723028684011295, 7.83796655229938673925443104465, 8.470584823621385836340461439791, 9.0977238386802777509765448844, 10.26671390993426491439168867674, 10.7204982775706731417106086249, 11.172317531111025875320156043341, 12.143012400784844087710131561260, 12.52360788533324929285850180626, 13.316150486155357033550779897347, 14.30179041904709442161770792336, 14.840362850223932240343596791081, 15.33906836379716702812620050643, 15.70431918313544545596374916586, 16.85328971797041550908736326159, 17.48556704658335505498941420022, 17.95920630433370400557226001195