| L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)8-s + (−0.309 − 0.951i)11-s + (−0.951 − 0.309i)13-s + (0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + (−0.809 − 0.587i)19-s + (0.587 + 0.809i)22-s + (0.951 − 0.309i)23-s + 26-s + (−0.809 + 0.587i)29-s + (0.809 + 0.587i)31-s + i·32-s + (0.309 − 0.951i)34-s + ⋯ |
| L(s) = 1 | + (−0.951 + 0.309i)2-s + (0.809 − 0.587i)4-s + (−0.587 + 0.809i)8-s + (−0.309 − 0.951i)11-s + (−0.951 − 0.309i)13-s + (0.309 − 0.951i)16-s + (−0.587 + 0.809i)17-s + (−0.809 − 0.587i)19-s + (0.587 + 0.809i)22-s + (0.951 − 0.309i)23-s + 26-s + (−0.809 + 0.587i)29-s + (0.809 + 0.587i)31-s + i·32-s + (0.309 − 0.951i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.425 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 525 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.425 + 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6319053968 + 0.4010193590i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6319053968 + 0.4010193590i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6161751977 + 0.06182696565i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6161751977 + 0.06182696565i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.951 + 0.309i)T \) |
| 11 | \( 1 + (-0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.951 - 0.309i)T \) |
| 17 | \( 1 + (-0.587 + 0.809i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.951 - 0.309i)T \) |
| 29 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.951 - 0.309i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + (0.587 + 0.809i)T \) |
| 59 | \( 1 + (-0.309 + 0.951i)T \) |
| 61 | \( 1 + (-0.309 - 0.951i)T \) |
| 67 | \( 1 + (-0.587 + 0.809i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (0.951 - 0.309i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (0.587 - 0.809i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.587 - 0.809i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.057807434324450815257251314498, −22.23158387104977397455217707947, −21.14404520297339885644556255207, −20.59532679617515327516686114920, −19.668463130751075221350432779446, −18.946954536709381765512668162966, −18.1176973968312003961472497215, −17.21186683065031390743372326286, −16.71824360400512313487428162409, −15.450058659942180954897158043494, −14.97953121333518648891474721393, −13.54446220584729022578015254391, −12.53783407323228038224170222338, −11.82778795386530940586727237626, −10.872887306105977755777083073054, −9.90903274067573412696402723079, −9.32287387289843381095526864769, −8.22627963762629866228975506948, −7.29378682063000842024968393801, −6.63383944551299330476883209787, −5.1511760122223840423497154102, −4.006188309701135542120243418771, −2.613519259462591390431942943802, −1.89058940787516892859475140942, −0.359932097166388406669502820,
0.73880473482927507651346324115, 2.125454078976411462130278418217, 3.12176258208985630358599388810, 4.74598717222144079078701372086, 5.79850427776609415700315377128, 6.72637483875779816012775540779, 7.63987292560332908594887211199, 8.62805673884105194923648637419, 9.22050012187674098204616441802, 10.59785934121136707298684051094, 10.83231516998617065759733026424, 12.11166019842128394012239590249, 13.0918053642095103374348259298, 14.293196416754709509010307550639, 15.14008566446633018619533150635, 15.84257029102852278092556667511, 16.93670130134296304158744195146, 17.35176718745268135205114985287, 18.39050760749737888539625550370, 19.30102687304418937703635538271, 19.68751224140487930920578668885, 20.88214614669672085668264223351, 21.58813049636886141148483042940, 22.6762374038736053017268574185, 23.83613159436623573035543390230