L(s) = 1 | + (0.587 + 0.809i)3-s − 7-s + (−0.309 + 0.951i)9-s + (−0.951 + 0.309i)11-s + (0.809 + 0.587i)17-s + (−0.587 + 0.809i)19-s + (−0.587 − 0.809i)21-s + (0.309 + 0.951i)23-s + (−0.951 + 0.309i)27-s + (−0.587 − 0.809i)29-s + (0.809 + 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.951 − 0.309i)37-s + (0.309 − 0.951i)41-s − i·43-s + ⋯ |
L(s) = 1 | + (0.587 + 0.809i)3-s − 7-s + (−0.309 + 0.951i)9-s + (−0.951 + 0.309i)11-s + (0.809 + 0.587i)17-s + (−0.587 + 0.809i)19-s + (−0.587 − 0.809i)21-s + (0.309 + 0.951i)23-s + (−0.951 + 0.309i)27-s + (−0.587 − 0.809i)29-s + (0.809 + 0.587i)31-s + (−0.809 − 0.587i)33-s + (−0.951 − 0.309i)37-s + (0.309 − 0.951i)41-s − i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.353 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.353 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1591337082 + 0.2302473090i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.1591337082 + 0.2302473090i\) |
\(L(1)\) |
\(\approx\) |
\(0.8097662453 + 0.3880229669i\) |
\(L(1)\) |
\(\approx\) |
\(0.8097662453 + 0.3880229669i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.587 + 0.809i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (-0.951 + 0.309i)T \) |
| 17 | \( 1 + (0.809 + 0.587i)T \) |
| 19 | \( 1 + (-0.587 + 0.809i)T \) |
| 23 | \( 1 + (0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.587 - 0.809i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.951 - 0.309i)T \) |
| 41 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (-0.587 - 0.809i)T \) |
| 59 | \( 1 + (0.951 + 0.309i)T \) |
| 61 | \( 1 + (-0.951 + 0.309i)T \) |
| 67 | \( 1 + (0.587 - 0.809i)T \) |
| 71 | \( 1 + (-0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (0.587 - 0.809i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.618638239594880791790009035365, −16.845271866422248676595296232156, −16.19065899063372258471965905201, −15.47667982394185029489757363907, −14.85697486326682897332211401552, −14.0639987431940909934570384270, −13.4036605193247289563566189497, −12.95352204565013144540133651914, −12.39266302421154932522116157548, −11.650692040229583200521155034151, −10.744357973814524920191999691805, −10.03342573440098493277334852375, −9.32705674974256647354670215217, −8.624364772156022790706233779814, −8.040481093039574470743345297099, −7.16299500754870618160823175050, −6.745860432690136816240715259173, −5.94535306174806910304925915295, −5.2002401611216680016233643917, −4.19556418203684784291191520339, −3.096668459116246617503413818189, −2.92326672257909275093852469080, −2.03434251671589897395655642657, −0.913315070139918145199579450751, −0.07311665739083270829529705073,
1.52775303698000006889839704441, 2.41089075459417049338193741408, 3.19319208842005128744818491916, 3.68650145129526291549547052444, 4.49123747500878656456938085110, 5.39821808319238567959356169679, 5.90382772341179875895915445156, 6.884821591756152477293218947482, 7.81135797311573842323547803760, 8.18028969993051112890995398329, 9.1681660405845793983305071201, 9.698551014958556183458502345615, 10.32828144395725257400022324052, 10.71917812682019683777330694981, 11.78325533862264886720372992090, 12.59001842620324924183678976650, 13.159943542927571382986158179230, 13.77918022493545222295261547841, 14.61616430750258924763788331134, 15.140389546460496899850234690197, 15.89178293134869906160369567057, 16.18237505921210119961489388513, 17.03516475230453542811432092575, 17.61117296155816326432389451196, 18.705866091922541815445557883248