L(s) = 1 | + (−0.994 − 0.104i)3-s + (0.5 − 0.866i)7-s + (0.978 + 0.207i)9-s + (0.207 + 0.978i)11-s + (−0.104 − 0.994i)17-s + (0.994 − 0.104i)19-s + (−0.587 + 0.809i)21-s + (0.978 − 0.207i)23-s + (−0.951 − 0.309i)27-s + (−0.994 − 0.104i)29-s + (−0.809 + 0.587i)31-s + (−0.104 − 0.994i)33-s + (−0.743 − 0.669i)37-s + (−0.669 + 0.743i)41-s + (0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (−0.994 − 0.104i)3-s + (0.5 − 0.866i)7-s + (0.978 + 0.207i)9-s + (0.207 + 0.978i)11-s + (−0.104 − 0.994i)17-s + (0.994 − 0.104i)19-s + (−0.587 + 0.809i)21-s + (0.978 − 0.207i)23-s + (−0.951 − 0.309i)27-s + (−0.994 − 0.104i)29-s + (−0.809 + 0.587i)31-s + (−0.104 − 0.994i)33-s + (−0.743 − 0.669i)37-s + (−0.669 + 0.743i)41-s + (0.866 + 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.769 + 0.638i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.769 + 0.638i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.07874727340 + 0.2183261368i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.07874727340 + 0.2183261368i\) |
\(L(1)\) |
\(\approx\) |
\(0.7342961314 - 0.04472383451i\) |
\(L(1)\) |
\(\approx\) |
\(0.7342961314 - 0.04472383451i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.994 - 0.104i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.207 + 0.978i)T \) |
| 17 | \( 1 + (-0.104 - 0.994i)T \) |
| 19 | \( 1 + (0.994 - 0.104i)T \) |
| 23 | \( 1 + (0.978 - 0.207i)T \) |
| 29 | \( 1 + (-0.994 - 0.104i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.743 - 0.669i)T \) |
| 41 | \( 1 + (-0.669 + 0.743i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (-0.587 + 0.809i)T \) |
| 59 | \( 1 + (-0.207 + 0.978i)T \) |
| 61 | \( 1 + (-0.743 + 0.669i)T \) |
| 67 | \( 1 + (-0.406 + 0.913i)T \) |
| 71 | \( 1 + (-0.913 + 0.406i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.587 - 0.809i)T \) |
| 89 | \( 1 + (0.978 - 0.207i)T \) |
| 97 | \( 1 + (0.913 - 0.406i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.56455417764773737901952650501, −17.1448703371359228817340368215, −16.451439569443710755398200716956, −15.77834503303889915747297076514, −15.185371527398591886179530187073, −14.54582034344679418085430780908, −13.64239393954477047042166894916, −12.91749115129251749946155802156, −12.278117838489434177991812566917, −11.60630553972529062898561212660, −11.07447480800944949693549125827, −10.60882516576232981584945103619, −9.52730924084011100124866291704, −9.060823908270918781188371968680, −8.1890168665414117091745976213, −7.475050978872855358530420101613, −6.5836373273876670813809199404, −5.89285443651549669494693121551, −5.395539536455947690777991555913, −4.799301067579608125106982051526, −3.74389766447743132668384129738, −3.15710846086227192357529654343, −1.858730349773251891800538572055, −1.33338649848654106873039880608, −0.073851192024705147178853059577,
1.15017546827771042567907661803, 1.596606709205406167801086905489, 2.78820906568469545998000758573, 3.80787551113303459023527748530, 4.58951021921060853831828749840, 5.04527632468370634379286650545, 5.76347504715985865600311779785, 6.832337569851738583492633035060, 7.28456003178684739809501121015, 7.61893390994360988081170956135, 8.94320611441375185788379848028, 9.5697116988459468948413836128, 10.3293083816758329223445209011, 10.87558980237753483580901126126, 11.62765282964210161643542382094, 11.99746232992900940699478807025, 13.02454062263344391525270662628, 13.33432120672326757297292269424, 14.360475483717008011758623851668, 14.83470049394893370322685291453, 15.84873047185222456372066835599, 16.26234388392999814090678156576, 17.10289075079235755299797565379, 17.45038779016410988158394985392, 18.188823502872547700689555722996