L(s) = 1 | + (0.309 − 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (0.951 − 0.309i)17-s + (0.309 + 0.951i)19-s + (−0.309 + 0.951i)21-s + (0.587 + 0.809i)23-s + (−0.809 + 0.587i)27-s + (−0.951 − 0.309i)29-s + (−0.951 + 0.309i)31-s + (−0.309 − 0.951i)33-s + (−0.587 + 0.809i)37-s + (−0.587 + 0.809i)41-s + 43-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (0.951 − 0.309i)17-s + (0.309 + 0.951i)19-s + (−0.309 + 0.951i)21-s + (0.587 + 0.809i)23-s + (−0.809 + 0.587i)27-s + (−0.951 − 0.309i)29-s + (−0.951 + 0.309i)31-s + (−0.309 − 0.951i)33-s + (−0.587 + 0.809i)37-s + (−0.587 + 0.809i)41-s + 43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.450 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.450 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6989597226 + 0.4304651894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6989597226 + 0.4304651894i\) |
\(L(1)\) |
\(\approx\) |
\(0.9228953243 - 0.2283993380i\) |
\(L(1)\) |
\(\approx\) |
\(0.9228953243 - 0.2283993380i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.309 - 0.951i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.809 - 0.587i)T \) |
| 17 | \( 1 + (0.951 - 0.309i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.587 + 0.809i)T \) |
| 29 | \( 1 + (-0.951 - 0.309i)T \) |
| 31 | \( 1 + (-0.951 + 0.309i)T \) |
| 37 | \( 1 + (-0.587 + 0.809i)T \) |
| 41 | \( 1 + (-0.587 + 0.809i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.309 + 0.951i)T \) |
| 59 | \( 1 + (-0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.587 - 0.809i)T \) |
| 67 | \( 1 + (0.951 - 0.309i)T \) |
| 71 | \( 1 + (-0.951 - 0.309i)T \) |
| 73 | \( 1 + (-0.809 + 0.587i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.587 + 0.809i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.644401488527127387672390662247, −17.04831522468623776004209943879, −16.46551177631824937994213314763, −15.92518713972858154528677125561, −15.200100517227527077751363509707, −14.61199348212753871516249183422, −14.09448565581125287380836213988, −13.16015940548311823830455016520, −12.58271445007156341777355207932, −11.83498303393576488590913237387, −10.97679851466022551233411544470, −10.4029437864684342185882851, −9.68595833391604700241748419353, −9.10177444635184325317141589450, −8.768546848316355968046969549534, −7.49543093796674158464201266266, −7.07480478087685941653835112011, −6.029063735511365224022513418340, −5.47870128444740985105876017521, −4.54929395857125079688354798286, −3.89708905914490275954599760038, −3.25431986844884059988739980565, −2.57360991425008822093564727065, −1.54786453492169709577391455468, −0.214631008367478072679651503077,
1.054848168763843588445994824466, 1.59063048600714154861553877442, 2.71923367120066498927428250117, 3.4481032527573394560519200820, 3.76216426469761411541352054506, 5.27308875088006217777512721300, 5.86721172259387748277100338151, 6.48108258763186277528887156973, 7.22487159246710764558916704406, 7.76026164207490124068483016210, 8.616624351357919759619066278535, 9.33718684730770028972237976616, 9.754937467012442052349323177377, 10.816114610594173247541393059911, 11.606646298691264286386430749129, 12.19965070286218049139642123131, 12.72535535573766583317118637204, 13.510389638222531149358375932692, 13.96993839472416138984505942120, 14.63405621941117218313766272690, 15.37154124369512053596685235851, 16.26884806141093202225531001033, 16.87383075334559706471380412268, 17.28392125047627096691367152214, 18.428118678564331244047295930727