L(s) = 1 | + (0.207 − 0.978i)3-s + (0.5 + 0.866i)7-s + (−0.913 − 0.406i)9-s + (−0.406 − 0.913i)11-s + (−0.978 + 0.207i)17-s + (−0.207 − 0.978i)19-s + (0.951 − 0.309i)21-s + (−0.913 + 0.406i)23-s + (−0.587 + 0.809i)27-s + (0.207 − 0.978i)29-s + (0.309 − 0.951i)31-s + (−0.978 + 0.207i)33-s + (−0.994 + 0.104i)37-s + (0.104 + 0.994i)41-s + (−0.866 + 0.5i)43-s + ⋯ |
L(s) = 1 | + (0.207 − 0.978i)3-s + (0.5 + 0.866i)7-s + (−0.913 − 0.406i)9-s + (−0.406 − 0.913i)11-s + (−0.978 + 0.207i)17-s + (−0.207 − 0.978i)19-s + (0.951 − 0.309i)21-s + (−0.913 + 0.406i)23-s + (−0.587 + 0.809i)27-s + (0.207 − 0.978i)29-s + (0.309 − 0.951i)31-s + (−0.978 + 0.207i)33-s + (−0.994 + 0.104i)37-s + (0.104 + 0.994i)41-s + (−0.866 + 0.5i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.337 + 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.337 + 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5072125779 + 0.3569206532i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5072125779 + 0.3569206532i\) |
\(L(1)\) |
\(\approx\) |
\(0.8857492761 - 0.2316520805i\) |
\(L(1)\) |
\(\approx\) |
\(0.8857492761 - 0.2316520805i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.207 - 0.978i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.406 - 0.913i)T \) |
| 17 | \( 1 + (-0.978 + 0.207i)T \) |
| 19 | \( 1 + (-0.207 - 0.978i)T \) |
| 23 | \( 1 + (-0.913 + 0.406i)T \) |
| 29 | \( 1 + (0.207 - 0.978i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.994 + 0.104i)T \) |
| 41 | \( 1 + (0.104 + 0.994i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.309 + 0.951i)T \) |
| 53 | \( 1 + (0.951 - 0.309i)T \) |
| 59 | \( 1 + (0.406 - 0.913i)T \) |
| 61 | \( 1 + (-0.994 - 0.104i)T \) |
| 67 | \( 1 + (-0.743 + 0.669i)T \) |
| 71 | \( 1 + (-0.669 + 0.743i)T \) |
| 73 | \( 1 + (0.809 + 0.587i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.951 + 0.309i)T \) |
| 89 | \( 1 + (-0.913 + 0.406i)T \) |
| 97 | \( 1 + (0.669 - 0.743i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.84559300257440440234885169415, −17.08657291437999598871757265960, −16.48501875464742082513413058282, −15.87924260711944406047469470217, −15.15152573433756481176929477969, −14.65178236289225858050597362159, −13.86163643630796162845690757809, −13.51366368338923017688776127386, −12.30925529731235496064337565837, −11.90183024495110727481418969540, −10.77012566490500314867019998057, −10.43321024869264603372263721715, −10.04934893583068173114159769359, −8.94026479026753967823673475287, −8.549416880122288230934705167647, −7.63770853979061939204340481447, −7.05005976610948711817933170618, −6.1243355871851851516054477407, −5.11066042965451107001809313140, −4.708484807785755487827881041341, −3.96102154871974676590321008483, −3.375111333054693289546232845504, −2.25815774665997849851706015494, −1.66597942678175498186474750004, −0.16499533503317946511739504319,
0.92517188793525110618395194633, 1.97172221476179543077752077812, 2.46245733133404853873156185028, 3.1788621095586077567485382056, 4.25493648860295460882425690804, 5.12654659361095103023148582500, 5.96020537735448697789290983956, 6.32786804444099680259622258550, 7.24490993727152011501669708272, 8.12359939285981271486372818914, 8.40422850068686110722008509721, 9.11206985237504306334937370742, 9.93242032399129773639084484162, 11.1772191153041983930171157929, 11.33441769124341916891348355212, 12.08971626776625782154402001863, 12.86658176331322475719308321219, 13.505773287199571090054633643936, 13.886967580707509289577968454842, 14.83526981787303675635359777601, 15.38158306306356371233850958485, 15.99346326204165234684349346779, 17.01790262839204233967225686113, 17.611205670235083629990871260049, 18.144011883708661738808297709771