L(s) = 1 | + (−0.104 − 0.994i)3-s + (−0.866 + 0.5i)7-s + (−0.978 + 0.207i)9-s + (0.207 − 0.978i)11-s + (0.994 + 0.104i)17-s + (−0.994 − 0.104i)19-s + (0.587 + 0.809i)21-s + (0.207 − 0.978i)23-s + (0.309 + 0.951i)27-s + (−0.994 + 0.104i)29-s + (0.809 + 0.587i)31-s + (−0.994 − 0.104i)33-s + (−0.669 − 0.743i)37-s + (−0.669 − 0.743i)41-s + (0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.104 − 0.994i)3-s + (−0.866 + 0.5i)7-s + (−0.978 + 0.207i)9-s + (0.207 − 0.978i)11-s + (0.994 + 0.104i)17-s + (−0.994 − 0.104i)19-s + (0.587 + 0.809i)21-s + (0.207 − 0.978i)23-s + (0.309 + 0.951i)27-s + (−0.994 + 0.104i)29-s + (0.809 + 0.587i)31-s + (−0.994 − 0.104i)33-s + (−0.669 − 0.743i)37-s + (−0.669 − 0.743i)41-s + (0.5 + 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0929 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0929 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1779267502 + 0.1620922079i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1779267502 + 0.1620922079i\) |
\(L(1)\) |
\(\approx\) |
\(0.7275014590 - 0.2453519000i\) |
\(L(1)\) |
\(\approx\) |
\(0.7275014590 - 0.2453519000i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.104 - 0.994i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (0.207 - 0.978i)T \) |
| 17 | \( 1 + (0.994 + 0.104i)T \) |
| 19 | \( 1 + (-0.994 - 0.104i)T \) |
| 23 | \( 1 + (0.207 - 0.978i)T \) |
| 29 | \( 1 + (-0.994 + 0.104i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.669 - 0.743i)T \) |
| 41 | \( 1 + (-0.669 - 0.743i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.207 + 0.978i)T \) |
| 61 | \( 1 + (0.743 + 0.669i)T \) |
| 67 | \( 1 + (-0.913 + 0.406i)T \) |
| 71 | \( 1 + (0.913 + 0.406i)T \) |
| 73 | \( 1 + (0.951 - 0.309i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.978 - 0.207i)T \) |
| 97 | \( 1 + (0.406 - 0.913i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.38981207714373373564808414270, −17.16843100611227125375706566138, −16.56833080189815357208500316732, −15.74440883541698354859941128755, −15.299379104402667945664505896651, −14.627384087815633065366464147297, −13.954262022867959587984932260816, −13.131686245847748572803909845344, −12.479146110682591164228879089498, −11.73945004239516578863659063614, −11.01862591192319627900821874406, −10.25793307848429947121199826438, −9.68250235154875199295136092326, −9.43422963466585380207272800482, −8.35856280333758804007693560283, −7.65331433887372397211879947837, −6.75637608829612210130635776621, −6.16422985971727744259468071384, −5.28257218433090159013870490047, −4.63304161503185050139968666410, −3.7894211572153898326598386792, −3.39481986915587230172771327708, −2.43342461517263778397525204268, −1.38922394792324044892727095366, −0.07555341791974761752801694200,
0.87494660965948780469609664427, 1.81551142140698625193103368656, 2.715161581416418917109044553542, 3.22889437924306711909158673821, 4.14050027991484254422065171255, 5.40891054413089540582058914947, 5.80076639455468837276223299252, 6.57009737371523937904203271242, 7.0208687723807813869356588540, 8.03129953821387154397434378686, 8.61002671050971662345179251073, 9.11937270094674037524598632689, 10.15920911674057167293822742133, 10.80712983178152611713648150678, 11.60690246679000298182753584638, 12.26124321496474881243542370043, 12.776862383271730952472336691892, 13.32704253427821068811399305273, 14.14058131446063468155906770407, 14.63358091525663243596852828011, 15.51415820786500226039265260210, 16.37428233541176478956587775146, 16.78441699136361572137642499075, 17.43018275899602307023730429631, 18.43122248697056589512050653670