L(s) = 1 | + (−0.669 + 0.743i)3-s + (−0.866 − 0.5i)7-s + (−0.104 − 0.994i)9-s + (−0.994 − 0.104i)11-s + (−0.743 + 0.669i)17-s + (−0.743 + 0.669i)19-s + (0.951 − 0.309i)21-s + (0.994 + 0.104i)23-s + (0.809 + 0.587i)27-s + (−0.743 − 0.669i)29-s + (−0.309 + 0.951i)31-s + (0.743 − 0.669i)33-s + (0.913 + 0.406i)37-s + (−0.913 − 0.406i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.669 + 0.743i)3-s + (−0.866 − 0.5i)7-s + (−0.104 − 0.994i)9-s + (−0.994 − 0.104i)11-s + (−0.743 + 0.669i)17-s + (−0.743 + 0.669i)19-s + (0.951 − 0.309i)21-s + (0.994 + 0.104i)23-s + (0.809 + 0.587i)27-s + (−0.743 − 0.669i)29-s + (−0.309 + 0.951i)31-s + (0.743 − 0.669i)33-s + (0.913 + 0.406i)37-s + (−0.913 − 0.406i)41-s + (−0.5 + 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.636 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.636 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3026446655 - 0.1426311617i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3026446655 - 0.1426311617i\) |
\(L(1)\) |
\(\approx\) |
\(0.5784484706 + 0.1210764315i\) |
\(L(1)\) |
\(\approx\) |
\(0.5784484706 + 0.1210764315i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.669 + 0.743i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.994 - 0.104i)T \) |
| 17 | \( 1 + (-0.743 + 0.669i)T \) |
| 19 | \( 1 + (-0.743 + 0.669i)T \) |
| 23 | \( 1 + (0.994 + 0.104i)T \) |
| 29 | \( 1 + (-0.743 - 0.669i)T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (0.913 + 0.406i)T \) |
| 41 | \( 1 + (-0.913 - 0.406i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.994 + 0.104i)T \) |
| 61 | \( 1 + (0.406 + 0.913i)T \) |
| 67 | \( 1 + (-0.978 + 0.207i)T \) |
| 71 | \( 1 + (-0.978 - 0.207i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.309 + 0.951i)T \) |
| 89 | \( 1 + (-0.104 + 0.994i)T \) |
| 97 | \( 1 + (0.207 - 0.978i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.24778692534066876646250929467, −17.392750544440584980926735199873, −16.81320671272544785198594277668, −16.16150080714098034541508146996, −15.46169969659506047437593799953, −14.962339565809891682496463055227, −13.77997021830780277058671732049, −13.16103138532915355578166087553, −12.88126536380428161220908242718, −12.18470097159255325944885847549, −11.30529217011306366745187410705, −10.88285589798952715561077725588, −10.10590459709918305686236167740, −9.17706781461926073997463664498, −8.67774441502939587972499254447, −7.613792425898095554993287807017, −7.14596135029559681317138276067, −6.41761389611949605275056864577, −5.783669026962548774460156963373, −5.07365230348620728024248421421, −4.413236491953670747642189795541, −3.12839364208934117514437699458, −2.52797655123791083547897887241, −1.84887637514701496015524778302, −0.5567835733512299188310376419,
0.16649329112385609943411333272, 1.341108500656034917058950981663, 2.52993303211283819983687092410, 3.352386866534312789502982654, 3.99163467021606309125742303169, 4.71914092158845102965923834417, 5.48351081317739039382148763152, 6.20939848384517412783814690351, 6.743906061745421094552891029651, 7.61549683784811634859293398230, 8.53079729474528412075442062476, 9.211715564540504160444458500121, 9.99526840769094019305310333988, 10.51799953592093982120944888055, 10.952966424214923412716535998511, 11.779425658265102075907998371455, 12.71695197915296388099372139348, 13.02705525992074741781401098981, 13.80513051239528050211944774159, 14.92373568842241969585556823157, 15.2395018478462482996298857157, 15.96208382830375592237951393268, 16.70066701107529760691880966454, 16.93081105037918313384040483854, 17.81620993061226582376310266942