L(s) = 1 | + (−0.669 − 0.743i)3-s + (0.866 − 0.5i)7-s + (−0.104 + 0.994i)9-s + (0.994 − 0.104i)11-s + (0.743 + 0.669i)17-s + (0.743 + 0.669i)19-s + (−0.951 − 0.309i)21-s + (−0.994 + 0.104i)23-s + (0.809 − 0.587i)27-s + (0.743 − 0.669i)29-s + (−0.309 − 0.951i)31-s + (−0.743 − 0.669i)33-s + (0.913 − 0.406i)37-s + (−0.913 + 0.406i)41-s + (−0.5 − 0.866i)43-s + ⋯ |
L(s) = 1 | + (−0.669 − 0.743i)3-s + (0.866 − 0.5i)7-s + (−0.104 + 0.994i)9-s + (0.994 − 0.104i)11-s + (0.743 + 0.669i)17-s + (0.743 + 0.669i)19-s + (−0.951 − 0.309i)21-s + (−0.994 + 0.104i)23-s + (0.809 − 0.587i)27-s + (0.743 − 0.669i)29-s + (−0.309 − 0.951i)31-s + (−0.743 − 0.669i)33-s + (0.913 − 0.406i)37-s + (−0.913 + 0.406i)41-s + (−0.5 − 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0952 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0952 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.223998320 - 1.112438035i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.223998320 - 1.112438035i\) |
\(L(1)\) |
\(\approx\) |
\(0.9890590835 - 0.3221521096i\) |
\(L(1)\) |
\(\approx\) |
\(0.9890590835 - 0.3221521096i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.669 - 0.743i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.994 - 0.104i)T \) |
| 17 | \( 1 + (0.743 + 0.669i)T \) |
| 19 | \( 1 + (0.743 + 0.669i)T \) |
| 23 | \( 1 + (-0.994 + 0.104i)T \) |
| 29 | \( 1 + (0.743 - 0.669i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.913 - 0.406i)T \) |
| 41 | \( 1 + (-0.913 + 0.406i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.994 + 0.104i)T \) |
| 61 | \( 1 + (-0.406 + 0.913i)T \) |
| 67 | \( 1 + (-0.978 - 0.207i)T \) |
| 71 | \( 1 + (-0.978 + 0.207i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 + (-0.104 - 0.994i)T \) |
| 97 | \( 1 + (-0.207 - 0.978i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.909242080776329175958067325385, −17.63802476758405478291191223983, −16.69057000112062793330177297875, −16.19661042085571936055390192729, −15.61497699004656859603847520865, −14.64923601740798403422568616488, −14.48849381402320698996438604654, −13.636957885860323618007305921504, −12.48358924848414357669928313889, −11.919966600766956638403566754267, −11.523866928242629684728659294051, −10.891845157333179454596822137235, −9.931913798740934195360805781086, −9.54188578622196438592326076384, −8.72504622766801791009784206913, −8.09041393273383411963834659448, −7.05068806936331699285572298097, −6.45450196443307341106622187820, −5.57842593571465048279688387824, −4.99256274932101165423319236328, −4.47456463251704855698190607301, −3.52809374030241373141459097960, −2.85664539971669544563178771451, −1.62412991450357606555072758056, −0.94686316279607456013544253197,
0.57166633236519253135959868764, 1.52340685636466207633038476893, 1.82120985233982599814177787370, 3.11523009380957742963850989760, 4.07097359311061061763950997605, 4.6176938355667396253256542724, 5.718250412385446824780461693493, 5.98925978922579890034252198665, 6.91334785954967855085412851956, 7.68431651692218926074080990963, 8.03325489540537092564637420940, 8.8882443454381756696762912496, 10.04910595212673470895595079127, 10.350445990287877342677301531011, 11.45641853527823288497347476511, 11.73145289462004083010683982323, 12.26311061107718284529927955702, 13.26106766689847939112342882860, 13.7654637771514603018193639711, 14.45352086004254794139146123030, 14.9580683087920727526470010659, 16.12611806317807476804644781984, 16.69736362719179370664728144631, 17.13942977293721752372791457070, 17.84496428677792538499080271475