L(s) = 1 | + (0.587 − 0.809i)3-s − i·7-s + (−0.309 − 0.951i)9-s + (−0.309 + 0.951i)11-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (0.309 − 0.951i)23-s + (−0.951 − 0.309i)27-s + (0.587 − 0.809i)29-s + (−0.587 − 0.809i)31-s + (0.587 + 0.809i)33-s + (−0.309 − 0.951i)37-s + (−0.951 + 0.309i)41-s + i·43-s + ⋯ |
L(s) = 1 | + (0.587 − 0.809i)3-s − i·7-s + (−0.309 − 0.951i)9-s + (−0.309 + 0.951i)11-s + (−0.809 + 0.587i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (0.309 − 0.951i)23-s + (−0.951 − 0.309i)27-s + (0.587 − 0.809i)29-s + (−0.587 − 0.809i)31-s + (0.587 + 0.809i)33-s + (−0.309 − 0.951i)37-s + (−0.951 + 0.309i)41-s + i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.07992335686 - 1.226781889i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.07992335686 - 1.226781889i\) |
\(L(1)\) |
\(\approx\) |
\(0.9667031273 - 0.5404709456i\) |
\(L(1)\) |
\(\approx\) |
\(0.9667031273 - 0.5404709456i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.587 - 0.809i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (-0.309 + 0.951i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (0.587 - 0.809i)T \) |
| 31 | \( 1 + (-0.587 - 0.809i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.951 + 0.309i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.587 - 0.809i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.951 + 0.309i)T \) |
| 67 | \( 1 + (-0.809 + 0.587i)T \) |
| 71 | \( 1 + (-0.587 + 0.809i)T \) |
| 73 | \( 1 + (0.951 + 0.309i)T \) |
| 79 | \( 1 + (0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.951 - 0.309i)T \) |
| 97 | \( 1 + (0.587 - 0.809i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.43387848460566450693494518491, −17.74643813687780521971385769699, −16.76909787826071541405419607961, −16.18164080369939870488920115837, −15.5830561416754504946769344394, −15.24951606548552976197183523119, −14.293690762836926825218673982995, −13.78664781014416879273265883295, −13.22968126360025037036306746181, −12.15218976411441034322151017813, −11.65268411430717091833587803616, −10.8115763410853397101176864277, −10.311845622308197181857754178, −9.29871334141486896516556204898, −8.98638418274138353834623309120, −8.35996493039643682312201648493, −7.60455750647036723036420630228, −6.72001775087877028629903981900, −5.636441854638799189765450575752, −5.30789972065845407321682438764, −4.54066025341579351331094628677, −3.3880469345879908521709857527, −3.136229745310391297293769782966, −2.26986126620116591640200430959, −1.34524733628835261292337959736,
0.28647931282161635898034456402, 1.201767119923469531474521062601, 2.10722661546617059952200740835, 2.67039546632050515701339952940, 3.712812718302723050969926345739, 4.287321375423720999937931013534, 5.1406167969562738956297169195, 6.19468911934199377932084513925, 6.959934663762710419340373653649, 7.237400374567260830343620445851, 8.09416108500989546916496853756, 8.65177316173868617678505679839, 9.59798411763153850159660148192, 10.07928050875068947937733790331, 11.002563422532921183151875314980, 11.62489044642649168099645480760, 12.54649046740663448235146825907, 13.02976417332573026724568820147, 13.56072262828459568632334460442, 14.2341076063263817484434552022, 14.927172773592623890558187545964, 15.46059891563758867719285642823, 16.372875914839976925773609072712, 17.17778752495263507679685368010, 17.71907443390175801605070620769