L(s) = 1 | + (0.809 + 0.587i)3-s − 7-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (0.587 + 0.809i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (−0.951 − 0.309i)23-s + (−0.309 + 0.951i)27-s + (0.587 − 0.809i)29-s + (−0.587 − 0.809i)31-s + (0.809 − 0.587i)33-s + (−0.951 + 0.309i)37-s + (0.951 − 0.309i)41-s − 43-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)3-s − 7-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (0.587 + 0.809i)17-s + (0.809 − 0.587i)19-s + (−0.809 − 0.587i)21-s + (−0.951 − 0.309i)23-s + (−0.309 + 0.951i)27-s + (0.587 − 0.809i)29-s + (−0.587 − 0.809i)31-s + (0.809 − 0.587i)33-s + (−0.951 + 0.309i)37-s + (0.951 − 0.309i)41-s − 43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0672 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0672 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8919543163 - 0.8338739426i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8919543163 - 0.8338739426i\) |
\(L(1)\) |
\(\approx\) |
\(1.131852154 + 0.05473801077i\) |
\(L(1)\) |
\(\approx\) |
\(1.131852154 + 0.05473801077i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (0.587 + 0.809i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.951 - 0.309i)T \) |
| 29 | \( 1 + (0.587 - 0.809i)T \) |
| 31 | \( 1 + (-0.587 - 0.809i)T \) |
| 37 | \( 1 + (-0.951 + 0.309i)T \) |
| 41 | \( 1 + (0.951 - 0.309i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.951 - 0.309i)T \) |
| 67 | \( 1 + (-0.587 - 0.809i)T \) |
| 71 | \( 1 + (-0.587 + 0.809i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.809 + 0.587i)T \) |
| 83 | \( 1 + (0.587 + 0.809i)T \) |
| 89 | \( 1 + (-0.951 - 0.309i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.00668869522852572947300719427, −17.8957619747477649864067875750, −16.68095869168597551466818782659, −16.07205035772469032799716587750, −15.545657655024712440902146954942, −14.60433303538053053360743887268, −14.17858400372578570964185263171, −13.542792693441173292350489206585, −12.77049166915495896954822170035, −12.17436191006064889731249360467, −11.87449148232032941586780601260, −10.52201637249866540710443522491, −9.862330051046186673642996814158, −9.37516064965050902172370363300, −8.77223926374322548767150872736, −7.72366125118327477035875105776, −7.34901653588561037103601476204, −6.64471006252222918529748729716, −5.953637380823716362323837096057, −5.01092899083119826616356627575, −4.04329061272871481453531681814, −3.2789547259586393827980739432, −2.84233498889160402136330131723, −1.76960062409782488099349177048, −1.16746622051740175084517950125,
0.27389403922699679809101402883, 1.54559549119191198942569271193, 2.46549545821005976805832867091, 3.345594431435580347953210489719, 3.59025115861334870305886328135, 4.491144828083819623970482332251, 5.43528073930353728016511828000, 6.139712921944840946682259821427, 6.844307943589323589749429189262, 7.89042984666174529279126722246, 8.27128872798564195682216721386, 9.18669735656174116045240236861, 9.628870408706754848304107711344, 10.28238036134532847093668214304, 10.95666147462025286057058438713, 11.81500207766094417236302377791, 12.57841503451396859638985580140, 13.38648061954026607274399290710, 13.81665555511748723162764296271, 14.447763733415123350623554450310, 15.29282833279120123985282063915, 15.77824840656992696379053586219, 16.4783667442920399678362054024, 16.82428287570725510956980091319, 17.86586540145970277531689790755