L(s) = 1 | + (−0.309 − 0.951i)3-s + i·7-s + (−0.809 + 0.587i)9-s + (0.587 − 0.809i)11-s + (−0.951 − 0.309i)17-s + (0.951 + 0.309i)19-s + (0.951 − 0.309i)21-s + (0.587 − 0.809i)23-s + (0.809 + 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.309 − 0.951i)31-s + (−0.951 − 0.309i)33-s + (0.809 − 0.587i)37-s + (−0.809 + 0.587i)41-s + 43-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)3-s + i·7-s + (−0.809 + 0.587i)9-s + (0.587 − 0.809i)11-s + (−0.951 − 0.309i)17-s + (0.951 + 0.309i)19-s + (0.951 − 0.309i)21-s + (0.587 − 0.809i)23-s + (0.809 + 0.587i)27-s + (−0.951 + 0.309i)29-s + (0.309 − 0.951i)31-s + (−0.951 − 0.309i)33-s + (0.809 − 0.587i)37-s + (−0.809 + 0.587i)41-s + 43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.171 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.171 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.084320127 - 0.9114662908i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.084320127 - 0.9114662908i\) |
\(L(1)\) |
\(\approx\) |
\(0.9266539101 - 0.2762849205i\) |
\(L(1)\) |
\(\approx\) |
\(0.9266539101 - 0.2762849205i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 + (0.587 - 0.809i)T \) |
| 17 | \( 1 + (-0.951 - 0.309i)T \) |
| 19 | \( 1 + (0.951 + 0.309i)T \) |
| 23 | \( 1 + (0.587 - 0.809i)T \) |
| 29 | \( 1 + (-0.951 + 0.309i)T \) |
| 31 | \( 1 + (0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.951 - 0.309i)T \) |
| 53 | \( 1 + (-0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.587 + 0.809i)T \) |
| 61 | \( 1 + (-0.587 + 0.809i)T \) |
| 67 | \( 1 + (-0.309 + 0.951i)T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (-0.951 + 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.711317722734508236450507564662, −17.424862638387929231206481224389, −16.9028766358075835997839339650, −16.12514144044137854752654283572, −15.440358798268094759591012604516, −15.02305996950096509542397739566, −14.0985454539679926002297831734, −13.67712910430814553784210567552, −12.75498785212593509268086365807, −11.99390196969683835450064245216, −11.19210272448547758781773698734, −10.85865557088755334477233851703, −9.98546208778638344969338086177, −9.45812466559080075971065183122, −8.92804848289534879524425351921, −7.879057982972850964660018967603, −7.12073828802331695452845882881, −6.55360429687299300979113352071, −5.624949792929021459671465282310, −4.83839940241818871751472854756, −4.27978590806753608166899786080, −3.65775138928796752274648374537, −2.88831454963978541408051083634, −1.72048756624885263657564102580, −0.80709738416716340686991352062,
0.51363363035261398225418477908, 1.39526355011439898950603786107, 2.335089026172164346414606613073, 2.82763535156031057081162356552, 3.83831087918525277995972936993, 4.88489654013041985160947443894, 5.64192851781562288116873523154, 6.123481181647722290482125669452, 6.8224789695500438486388855257, 7.58270204069638209225597484780, 8.33351432245104628879213412850, 8.985046968527971585938225419989, 9.47867126509804990562976442660, 10.74679059261157832184485655551, 11.27406027053330960786879445851, 11.87710803086601023297380577404, 12.36674447026004556751744542872, 13.32356844099874438184838390507, 13.54569618332396555036141364727, 14.61409730104291882291084477617, 14.95925446183194393549870502465, 16.10457419306937811539815654062, 16.44674911904648751683108552023, 17.28185413162323280927543967931, 17.958361047651556634165122306590