L(s) = 1 | + (0.913 + 0.406i)3-s + (−0.866 − 0.5i)7-s + (0.669 + 0.743i)9-s + (−0.743 − 0.669i)11-s + (0.406 + 0.913i)17-s + (−0.406 − 0.913i)19-s + (−0.587 − 0.809i)21-s + (−0.743 − 0.669i)23-s + (0.309 + 0.951i)27-s + (−0.406 + 0.913i)29-s + (0.809 + 0.587i)31-s + (−0.406 − 0.913i)33-s + (0.978 − 0.207i)37-s + (0.978 − 0.207i)41-s + (0.5 − 0.866i)43-s + ⋯ |
L(s) = 1 | + (0.913 + 0.406i)3-s + (−0.866 − 0.5i)7-s + (0.669 + 0.743i)9-s + (−0.743 − 0.669i)11-s + (0.406 + 0.913i)17-s + (−0.406 − 0.913i)19-s + (−0.587 − 0.809i)21-s + (−0.743 − 0.669i)23-s + (0.309 + 0.951i)27-s + (−0.406 + 0.913i)29-s + (0.809 + 0.587i)31-s + (−0.406 − 0.913i)33-s + (0.978 − 0.207i)37-s + (0.978 − 0.207i)41-s + (0.5 − 0.866i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.155i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.987 + 0.155i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.015720501 + 0.1574482659i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.015720501 + 0.1574482659i\) |
\(L(1)\) |
\(\approx\) |
\(1.264602061 + 0.09055757475i\) |
\(L(1)\) |
\(\approx\) |
\(1.264602061 + 0.09055757475i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.913 + 0.406i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.743 - 0.669i)T \) |
| 17 | \( 1 + (0.406 + 0.913i)T \) |
| 19 | \( 1 + (-0.406 - 0.913i)T \) |
| 23 | \( 1 + (-0.743 - 0.669i)T \) |
| 29 | \( 1 + (-0.406 + 0.913i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.978 - 0.207i)T \) |
| 41 | \( 1 + (0.978 - 0.207i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.743 + 0.669i)T \) |
| 61 | \( 1 + (-0.207 + 0.978i)T \) |
| 67 | \( 1 + (0.104 - 0.994i)T \) |
| 71 | \( 1 + (-0.104 - 0.994i)T \) |
| 73 | \( 1 + (-0.951 + 0.309i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 + (0.669 - 0.743i)T \) |
| 97 | \( 1 + (0.994 - 0.104i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.14488854186310206908167065832, −17.4575366663891261182791193990, −16.4876665972267428081420635327, −15.754234518729953079495195378020, −15.423485697223000790551103546728, −14.56961229534695643505554942501, −14.0252278263774708452208176850, −13.10525393745583301426463849143, −12.88996870770615358536561179521, −12.07083461953554224848830672247, −11.48970756237758587861011779388, −10.21304733051807591313364130758, −9.73433228473081365868070774015, −9.36010669037421387070764673143, −8.33600198736470578548912264918, −7.76320028588542728545073769763, −7.26300349490428016800015588433, −6.23730511870270021722346286114, −5.828881067306750178145988827726, −4.67911099698974213488446796857, −3.92651877296262126853306962084, −3.10313247681358153212057959830, −2.47621384534000210419562369856, −1.878634065043672245635399359388, −0.681234161421145667158572964553,
0.663483909229791906153954222822, 1.79661824969090614683005704956, 2.83791571052530199962959058415, 3.093882343930493765337955975111, 4.12414165751955273971118464540, 4.53502529117796542904990786675, 5.706059814980355916755735804665, 6.294244716044245490075334253646, 7.299217879581514491228799203213, 7.780812247226606921576634834662, 8.65640086912736741800037730326, 9.09534946960435928452891829144, 9.95137748973425583155084259138, 10.63728098394569875992368100309, 10.844404123946935598143974472475, 12.20987799527042624311442067073, 12.893771784360247365844167453040, 13.30317465643181087656764860375, 14.11079825926670905981323760925, 14.52726223376744210891650236881, 15.60529136367042707377189578814, 15.77653877949860647790712329236, 16.58606925351915194060259581961, 17.13014301266126743433103323687, 18.172594619848278626376907002172