L(s) = 1 | + (−0.866 + 0.5i)7-s − 11-s + (−0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.866 − 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (0.866 + 0.5i)37-s − 41-s − i·47-s + (0.5 − 0.866i)49-s + (−0.866 − 0.5i)53-s + 59-s + (−0.5 − 0.866i)61-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)7-s − 11-s + (−0.866 + 0.5i)13-s + (0.866 − 0.5i)17-s + (−0.5 + 0.866i)19-s + (−0.866 − 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.5 − 0.866i)31-s + (0.866 + 0.5i)37-s − 41-s − i·47-s + (0.5 − 0.866i)49-s + (−0.866 − 0.5i)53-s + 59-s + (−0.5 − 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.836 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.836 + 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8275023252 + 0.2468710620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8275023252 + 0.2468710620i\) |
\(L(1)\) |
\(\approx\) |
\(0.7800918437 + 0.05005910419i\) |
\(L(1)\) |
\(\approx\) |
\(0.7800918437 + 0.05005910419i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
good | 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 - T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (-0.866 - 0.5i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.74892012287266789337658969479, −17.39877864986017102229074660860, −16.449270400909009631059782225158, −16.092730513769728746183182903849, −15.26009062169301551979356407809, −14.72097704148035477482749025229, −13.81585433237390092665835833097, −13.25988662700765857379652463803, −12.547542369240608573893602522863, −12.19957351802254040882966627283, −10.99921399427298327402762066261, −10.51757937999186783823615339860, −9.8735400583062078675989814461, −9.32558717946233572847124901085, −8.29080941536648264837964614336, −7.686450838278322151604241181646, −7.07362256732115219440115574401, −6.27038492132977988018054797175, −5.50136916885689022094085768882, −4.8463897898368110756868029238, −3.94656977934174233634915859395, −3.11655669381312294944034194369, −2.61000880034857600009017567442, −1.52208415489483489821848015227, −0.40126199242332344890043951544,
0.52072904729740570657859962447, 1.99375317783778035619306199651, 2.47215250216870302158194205160, 3.30721714287845242519558014062, 4.121451565218316876861386176567, 4.993005853796574740003030527084, 5.71381828269889070763794910906, 6.31721777689034940745145899125, 7.12873356064622656652558220551, 7.95130370627960046015507717261, 8.39958263088995092491751829344, 9.57303444651046289140926829951, 9.860622676924286254666369262926, 10.42352623709052029601495497093, 11.630817140144075351262884335700, 11.95477923591729406306498113404, 12.799428918295197579605908291709, 13.2307860648816767323762564657, 14.12849553676748352978048543122, 14.76077481775710758887181297962, 15.44962491099894522179697448874, 16.105622956490030767451130621764, 16.688723498702344043079111806143, 17.23010662127112647245747249285, 18.30790397338433510973977939373