L(s) = 1 | + (−0.5 − 0.866i)7-s + (−0.900 + 0.433i)11-s + (−0.988 − 0.149i)13-s + (0.365 − 0.930i)17-s + (0.826 − 0.563i)19-s + (0.0747 − 0.997i)23-s + (−0.955 + 0.294i)29-s + (−0.733 − 0.680i)31-s + (0.5 − 0.866i)37-s + (0.222 − 0.974i)41-s + (−0.900 − 0.433i)47-s + (−0.5 + 0.866i)49-s + (0.988 − 0.149i)53-s + (0.623 + 0.781i)59-s + (−0.733 + 0.680i)61-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)7-s + (−0.900 + 0.433i)11-s + (−0.988 − 0.149i)13-s + (0.365 − 0.930i)17-s + (0.826 − 0.563i)19-s + (0.0747 − 0.997i)23-s + (−0.955 + 0.294i)29-s + (−0.733 − 0.680i)31-s + (0.5 − 0.866i)37-s + (0.222 − 0.974i)41-s + (−0.900 − 0.433i)47-s + (−0.5 + 0.866i)49-s + (0.988 − 0.149i)53-s + (0.623 + 0.781i)59-s + (−0.733 + 0.680i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.817 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5160 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.817 + 0.575i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.08201400648 - 0.2591571112i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.08201400648 - 0.2591571112i\) |
\(L(1)\) |
\(\approx\) |
\(0.7590488899 - 0.1929211400i\) |
\(L(1)\) |
\(\approx\) |
\(0.7590488899 - 0.1929211400i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.900 + 0.433i)T \) |
| 13 | \( 1 + (-0.988 - 0.149i)T \) |
| 17 | \( 1 + (0.365 - 0.930i)T \) |
| 19 | \( 1 + (0.826 - 0.563i)T \) |
| 23 | \( 1 + (0.0747 - 0.997i)T \) |
| 29 | \( 1 + (-0.955 + 0.294i)T \) |
| 31 | \( 1 + (-0.733 - 0.680i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.900 - 0.433i)T \) |
| 53 | \( 1 + (0.988 - 0.149i)T \) |
| 59 | \( 1 + (0.623 + 0.781i)T \) |
| 61 | \( 1 + (-0.733 + 0.680i)T \) |
| 67 | \( 1 + (0.826 - 0.563i)T \) |
| 71 | \( 1 + (0.0747 + 0.997i)T \) |
| 73 | \( 1 + (-0.988 - 0.149i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.955 - 0.294i)T \) |
| 89 | \( 1 + (0.955 + 0.294i)T \) |
| 97 | \( 1 + (0.900 - 0.433i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.4458339838918444433268101731, −17.840851311572732325437810085763, −16.95366980502696964690301059280, −16.39385619877603097056955118018, −15.747154771497656278408342351495, −15.06117376861784516505706233067, −14.5638263811407297102293194044, −13.67229497206424533853764404534, −12.90192805024810951251120275692, −12.53683955227728293572131547851, −11.664466683386903758790828020156, −11.162939321780314027421032740803, −10.05210539794060426102753772858, −9.7791834140152737347519205298, −8.96836344551628275124094901041, −8.11105501760222866223112775374, −7.63302329634266023294225136796, −6.76019790786579409199134971511, −5.78879080634208356168561861125, −5.505498127657223286974920668691, −4.67074728102257011376900035900, −3.51601616051371702110424660518, −3.064321182054795566361292402358, −2.17936969973678729099501299634, −1.377968735745965449885910801897,
0.08419179020808549096815258478, 0.85252778773825854338371388306, 2.17716288315849887637924209927, 2.746808271032752577388608844856, 3.5940914235075660636610537500, 4.44046937677735843546097037226, 5.1438637085780233222042028991, 5.74929499648845459851516582813, 6.92846484259908954327379322767, 7.34482771538324580942854883217, 7.76162062401704590081619606990, 8.951606700411583189316439411353, 9.569949620564032561488119562599, 10.1795265932948655083243972325, 10.743294388538370523528697249157, 11.58870978806197157000308796511, 12.30385153365311363469960852447, 13.10974958154098611264957256540, 13.37264238163574061092553851130, 14.44563577452460451161653296022, 14.749588122718410781950484377946, 15.80680299208244850933744646336, 16.2382512311892523756608103443, 16.89592418262959495442385393649, 17.56805216796658985009413074314