| L(s) = 1 | + (0.826 − 0.563i)5-s + (−0.5 − 0.866i)7-s + (−0.222 + 0.974i)11-s + (0.0747 + 0.997i)13-s + (−0.826 − 0.563i)17-s + (0.955 + 0.294i)19-s + (−0.733 − 0.680i)23-s + (0.365 − 0.930i)25-s + (−0.988 − 0.149i)29-s + (−0.365 − 0.930i)31-s + (−0.900 − 0.433i)35-s + (0.5 − 0.866i)37-s + (−0.623 + 0.781i)41-s + (−0.222 − 0.974i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | + (0.826 − 0.563i)5-s + (−0.5 − 0.866i)7-s + (−0.222 + 0.974i)11-s + (0.0747 + 0.997i)13-s + (−0.826 − 0.563i)17-s + (0.955 + 0.294i)19-s + (−0.733 − 0.680i)23-s + (0.365 − 0.930i)25-s + (−0.988 − 0.149i)29-s + (−0.365 − 0.930i)31-s + (−0.900 − 0.433i)35-s + (0.5 − 0.866i)37-s + (−0.623 + 0.781i)41-s + (−0.222 − 0.974i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 516 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.994 + 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 516 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.994 + 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01853267442 - 0.3443879374i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.01853267442 - 0.3443879374i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9130030196 - 0.1599979380i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9130030196 - 0.1599979380i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 43 | \( 1 \) |
| good | 5 | \( 1 + (0.826 - 0.563i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.222 + 0.974i)T \) |
| 13 | \( 1 + (0.0747 + 0.997i)T \) |
| 17 | \( 1 + (-0.826 - 0.563i)T \) |
| 19 | \( 1 + (0.955 + 0.294i)T \) |
| 23 | \( 1 + (-0.733 - 0.680i)T \) |
| 29 | \( 1 + (-0.988 - 0.149i)T \) |
| 31 | \( 1 + (-0.365 - 0.930i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.623 + 0.781i)T \) |
| 47 | \( 1 + (-0.222 - 0.974i)T \) |
| 53 | \( 1 + (-0.0747 + 0.997i)T \) |
| 59 | \( 1 + (-0.900 + 0.433i)T \) |
| 61 | \( 1 + (-0.365 + 0.930i)T \) |
| 67 | \( 1 + (-0.955 - 0.294i)T \) |
| 71 | \( 1 + (0.733 - 0.680i)T \) |
| 73 | \( 1 + (-0.0747 - 0.997i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.988 + 0.149i)T \) |
| 89 | \( 1 + (-0.988 + 0.149i)T \) |
| 97 | \( 1 + (-0.222 + 0.974i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.9445527828479984107148810567, −22.62301456414368827279723557784, −22.047295422805650757472604616528, −21.57577368106396293534380715550, −20.43184743701359467513762937193, −19.50660560467369980716085235853, −18.54952881365892761147669597686, −18.01748012926600255333485956686, −17.13332955490248149830726094511, −15.93571596503869855366470815306, −15.37055953853603103400451732740, −14.31148066331892512543796281295, −13.409856652582580495313749019939, −12.78865175775437908177028060214, −11.54282122284231863305439621059, −10.72345534039995533479454547657, −9.786870616161111625298481044643, −8.97155611207683082540187184839, −7.973367856153815176224972657139, −6.716823562964661673092025186126, −5.83853337032826523763436233507, −5.28722263453324379856018223910, −3.45664768047988188799581009632, −2.80629378733767060175444206561, −1.60892765892699734712476602824,
0.080029617278522587395448034170, 1.48944543957185923981048930487, 2.45236334050281097253655044715, 4.0042140449892216996315392799, 4.73906062291158002777143379250, 5.93887450354542252641439300604, 6.8757101438276203933922899196, 7.73148814951922533043058772018, 9.17971579205003379692308887692, 9.627711405600748434228084064083, 10.53865537865324033830803215718, 11.70328323499120924993400916359, 12.6919008285986917812243820596, 13.50614900826763374435264029571, 14.0702561199702129682519406434, 15.23847669140679101813911936077, 16.48505293750723366827646964259, 16.70009244363398362948018087070, 17.90691587615371887057928229033, 18.45276271105641179222649795908, 19.90449327761454321217457128096, 20.30243646746376562177152879626, 21.10732207863206061459805967822, 22.18198751389547646230499812478, 22.812860450040993410992443049834