| L(s) = 1 | + (0.173 − 0.984i)2-s − 3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)5-s + (−0.173 + 0.984i)6-s + (−0.5 + 0.866i)8-s + 9-s + (−0.5 − 0.866i)10-s + (−0.173 − 0.984i)11-s + (0.939 + 0.342i)12-s + (0.173 − 0.984i)13-s + (−0.766 + 0.642i)15-s + (0.766 + 0.642i)16-s + (−0.5 + 0.866i)17-s + (0.173 − 0.984i)18-s + (−0.173 + 0.984i)19-s + ⋯ |
| L(s) = 1 | + (0.173 − 0.984i)2-s − 3-s + (−0.939 − 0.342i)4-s + (0.766 − 0.642i)5-s + (−0.173 + 0.984i)6-s + (−0.5 + 0.866i)8-s + 9-s + (−0.5 − 0.866i)10-s + (−0.173 − 0.984i)11-s + (0.939 + 0.342i)12-s + (0.173 − 0.984i)13-s + (−0.766 + 0.642i)15-s + (0.766 + 0.642i)16-s + (−0.5 + 0.866i)17-s + (0.173 − 0.984i)18-s + (−0.173 + 0.984i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 511 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.712 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 511 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.712 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4037072406 - 0.9844049780i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.4037072406 - 0.9844049780i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5645893856 - 0.6277469248i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5645893856 - 0.6277469248i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 73 | \( 1 \) |
| good | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.766 - 0.642i)T \) |
| 11 | \( 1 + (-0.173 - 0.984i)T \) |
| 13 | \( 1 + (0.173 - 0.984i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (0.939 - 0.342i)T \) |
| 31 | \( 1 + (0.173 - 0.984i)T \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + (-0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.939 + 0.342i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.939 + 0.342i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (-0.766 - 0.642i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.64312503859814219492027335954, −23.236348301120571170385107580699, −22.33896164906187158452119382267, −21.71497085132566886278663485442, −21.023761738440978284590885123701, −19.37129510374163737594962777703, −18.287011216211266787142321231, −17.83874887461848326135296831351, −17.21078285592367865599350904463, −16.24545445921621906434191290922, −15.48324009170516803157099654802, −14.59571251518699490537134807919, −13.596363790449646446016061433876, −12.94198509074090350221695390105, −11.81036022624023036715175981668, −10.85475446831727432067612054033, −9.72084008256845847599180034755, −9.17687110099968011296758424931, −7.533373597083365741134088238652, −6.71372750830101918794378074514, −6.35181945927423695682931685756, −4.954305494932122033283352317798, −4.62695363642288369869914100632, −2.93147865793428672407310761333, −1.357871227882573725466604550906,
0.34025184998974985438696260859, 1.15878067427411252584268794540, 2.34366286790021931652356144384, 3.75329854703912314197651160849, 4.77678021325046721362261642425, 5.718774441886678295088206871586, 6.185990047342132923262857205625, 8.08094449988588278444213179907, 8.93497973434430845778117877905, 10.15200780499037585097630982231, 10.56967729294068095800523729635, 11.51447335732420145905529097410, 12.591759488632572069596380379966, 12.986741172221645691892707835628, 13.86618947336579055175586531439, 15.08627627481848407779211465441, 16.291294385243292354092079553433, 17.140256748742049924768404494205, 17.76676578398209884935023445723, 18.61881293898463178835173439490, 19.44233696053043309389800533907, 20.6955291631635286403017261896, 21.124577166126756079253386206487, 21.99514511903016001024528369313, 22.605945914896704699028761269067