| L(s) = 1 | + (0.173 − 0.984i)2-s − 3-s + (−0.939 − 0.342i)4-s + (−0.642 − 0.766i)5-s + (−0.173 + 0.984i)6-s + (−0.5 + 0.866i)8-s + 9-s + (−0.866 + 0.5i)10-s + (−0.984 + 0.173i)11-s + (0.939 + 0.342i)12-s + (0.984 + 0.173i)13-s + (0.642 + 0.766i)15-s + (0.766 + 0.642i)16-s + (0.866 + 0.5i)17-s + (0.173 − 0.984i)18-s + (−0.173 + 0.984i)19-s + ⋯ |
| L(s) = 1 | + (0.173 − 0.984i)2-s − 3-s + (−0.939 − 0.342i)4-s + (−0.642 − 0.766i)5-s + (−0.173 + 0.984i)6-s + (−0.5 + 0.866i)8-s + 9-s + (−0.866 + 0.5i)10-s + (−0.984 + 0.173i)11-s + (0.939 + 0.342i)12-s + (0.984 + 0.173i)13-s + (0.642 + 0.766i)15-s + (0.766 + 0.642i)16-s + (0.866 + 0.5i)17-s + (0.173 − 0.984i)18-s + (−0.173 + 0.984i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 511 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 511 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6030959505 - 0.4003288763i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6030959505 - 0.4003288763i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5999761564 - 0.3492195484i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5999761564 - 0.3492195484i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 73 | \( 1 \) |
| good | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.642 - 0.766i)T \) |
| 11 | \( 1 + (-0.984 + 0.173i)T \) |
| 13 | \( 1 + (0.984 + 0.173i)T \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (-0.766 + 0.642i)T \) |
| 29 | \( 1 + (-0.342 - 0.939i)T \) |
| 31 | \( 1 + (0.984 + 0.173i)T \) |
| 37 | \( 1 + (0.766 - 0.642i)T \) |
| 41 | \( 1 + (0.173 + 0.984i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.342 - 0.939i)T \) |
| 53 | \( 1 + (0.642 - 0.766i)T \) |
| 59 | \( 1 + (0.342 + 0.939i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.59147428409323447167995551980, −23.14508359471555981747754657745, −22.33548504356531003244220999665, −21.64817656539101840165391796249, −20.594859102636228320538917634971, −18.99383619984619123585912793211, −18.41171562631845187467933515148, −17.88182171851256954894516280552, −16.78159218221483164537150577199, −15.85507346193422263242642375972, −15.62492722384234124337593772984, −14.471188521489657061772601769209, −13.46551839720824523010995696011, −12.612844397852032659701524244403, −11.60828141568424847039985322013, −10.71268682109811393116859867102, −9.87495673947999293733131689742, −8.4201149979402042860440591114, −7.60581743578974067626946725383, −6.75383372565513095407403256, −5.96197183329689191298882197581, −5.02958688593817332386237789491, −4.05784813673567699348544223025, −2.932287259256012444381520661138, −0.660472667992060876237551934034,
0.82465982054700275159409226298, 1.872203620608756878611029628465, 3.606712402738681531704215193, 4.28352305116123172485536368289, 5.3633171238528717125964346705, 5.98867317862425138044326270375, 7.72802827954321973651374908433, 8.44954401398438653482889572685, 9.83791190232334492512613677677, 10.40992993311814129144062195570, 11.5327703410816250648437623310, 11.96268388046040227620025746233, 12.91821266783755721941217008980, 13.44920683301359408483602439192, 14.92368867895898804150409791647, 15.90642925227958941978460986400, 16.65905043196097742892118854395, 17.65048516235048714374267853621, 18.520626774770241966600974925569, 19.11375777317613544484015257006, 20.23291006153324221811427903420, 21.09491878551013117481906752756, 21.45092344427151868094586686505, 22.79924477535110589304480997729, 23.36723273332025777751308572159