| L(s) = 1 | + (−0.978 − 0.207i)2-s + (−0.669 + 0.743i)3-s + (0.913 + 0.406i)4-s + (−0.913 + 0.406i)5-s + (0.809 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.104 − 0.994i)9-s + (0.978 − 0.207i)10-s + (−0.669 + 0.743i)11-s + (−0.913 + 0.406i)12-s + (0.309 − 0.951i)13-s + (0.309 − 0.951i)15-s + (0.669 + 0.743i)16-s + (−0.978 + 0.207i)17-s + (−0.104 + 0.994i)18-s + (0.978 + 0.207i)19-s + ⋯ |
| L(s) = 1 | + (−0.978 − 0.207i)2-s + (−0.669 + 0.743i)3-s + (0.913 + 0.406i)4-s + (−0.913 + 0.406i)5-s + (0.809 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.104 − 0.994i)9-s + (0.978 − 0.207i)10-s + (−0.669 + 0.743i)11-s + (−0.913 + 0.406i)12-s + (0.309 − 0.951i)13-s + (0.309 − 0.951i)15-s + (0.669 + 0.743i)16-s + (−0.978 + 0.207i)17-s + (−0.104 + 0.994i)18-s + (0.978 + 0.207i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 497 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.809 + 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 497 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.809 + 0.586i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4340695617 + 0.1407282077i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4340695617 + 0.1407282077i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4648804949 + 0.08779717099i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4648804949 + 0.08779717099i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 71 | \( 1 \) |
| good | 2 | \( 1 + (-0.978 - 0.207i)T \) |
| 3 | \( 1 + (-0.669 + 0.743i)T \) |
| 5 | \( 1 + (-0.913 + 0.406i)T \) |
| 11 | \( 1 + (-0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.978 + 0.207i)T \) |
| 19 | \( 1 + (0.978 + 0.207i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.809 - 0.587i)T \) |
| 47 | \( 1 + (0.669 + 0.743i)T \) |
| 53 | \( 1 + (0.104 - 0.994i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.669 + 0.743i)T \) |
| 67 | \( 1 + (-0.913 - 0.406i)T \) |
| 73 | \( 1 + (-0.669 + 0.743i)T \) |
| 79 | \( 1 + (0.913 - 0.406i)T \) |
| 83 | \( 1 + (0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.913 + 0.406i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.73216825501404870309184226908, −23.21569325074812650232690430340, −21.91058308305252141716414158500, −20.84513477248374195386227660648, −19.81484526003173987557124449079, −19.216689257208750740372972443539, −18.47854752271763221710510477018, −17.755660219660895206265261002122, −16.7471363947672544246135178580, −16.084539044701396746210044250059, −15.539914473571081966562119719938, −14.06125374513523372191270825395, −13.0737832704931824451306942157, −11.95173578744435442526766018174, −11.31124315222905190492439766491, −10.763853272047822628669277602671, −9.23906390407445485993609379850, −8.48947031132189839632849005568, −7.5040588541500475238666686416, −6.95065168891490827259623828146, −5.79417873502446712083561270784, −4.85170272740123433975166807126, −3.187654363655360574995973669691, −1.78847267161408176701096350466, −0.65670896169812508460637378546,
0.68163852250886630281796845020, 2.54883820164480415145328336134, 3.55142053204838480600246745276, 4.63318701375261763708647309546, 5.9344925852642297455905597711, 6.99495909754885049240266920913, 7.85371588775859090635849691261, 8.82155466676634799997348773859, 9.96857322360470345122112369642, 10.567379314796250307817359028578, 11.33293300240148211676214047839, 12.0771438836686272645345667422, 13.0369966684538050867337044518, 14.95255025167579716286702619313, 15.40755675841333562248276786576, 16.03915480654104441670674803033, 17.01134032806024176822885839368, 17.9100752395833506156683938661, 18.43802283572222135962651427378, 19.530385869855170678476666904661, 20.58815344389915021870183780471, 20.735561480664927842697750369866, 22.356502539560397243261489426805, 22.5913671552293683103776648073, 23.757560948010111920215582475195