| L(s) = 1 | + (0.887 + 0.460i)2-s + (0.946 + 0.323i)3-s + (0.575 + 0.817i)4-s + (−0.669 − 0.743i)5-s + (0.691 + 0.722i)6-s + (0.134 + 0.990i)8-s + (0.791 + 0.611i)9-s + (−0.251 − 0.967i)10-s + (−0.525 + 0.850i)11-s + (0.280 + 0.959i)12-s + (0.473 − 0.880i)13-s + (−0.393 − 0.919i)15-s + (−0.337 + 0.941i)16-s + (0.913 + 0.406i)17-s + (0.420 + 0.907i)18-s + (0.599 + 0.800i)19-s + ⋯ |
| L(s) = 1 | + (0.887 + 0.460i)2-s + (0.946 + 0.323i)3-s + (0.575 + 0.817i)4-s + (−0.669 − 0.743i)5-s + (0.691 + 0.722i)6-s + (0.134 + 0.990i)8-s + (0.791 + 0.611i)9-s + (−0.251 − 0.967i)10-s + (−0.525 + 0.850i)11-s + (0.280 + 0.959i)12-s + (0.473 − 0.880i)13-s + (−0.393 − 0.919i)15-s + (−0.337 + 0.941i)16-s + (0.913 + 0.406i)17-s + (0.420 + 0.907i)18-s + (0.599 + 0.800i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 497 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.355 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 497 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.355 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.397702162 + 1.654081563i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.397702162 + 1.654081563i\) |
| \(L(1)\) |
\(\approx\) |
\(1.967377019 + 0.8234844180i\) |
| \(L(1)\) |
\(\approx\) |
\(1.967377019 + 0.8234844180i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 71 | \( 1 \) |
| good | 2 | \( 1 + (0.887 + 0.460i)T \) |
| 3 | \( 1 + (0.946 + 0.323i)T \) |
| 5 | \( 1 + (-0.669 - 0.743i)T \) |
| 11 | \( 1 + (-0.525 + 0.850i)T \) |
| 13 | \( 1 + (0.473 - 0.880i)T \) |
| 17 | \( 1 + (0.913 + 0.406i)T \) |
| 19 | \( 1 + (0.599 + 0.800i)T \) |
| 23 | \( 1 + (-0.365 - 0.930i)T \) |
| 29 | \( 1 + (0.858 + 0.512i)T \) |
| 31 | \( 1 + (-0.337 - 0.941i)T \) |
| 37 | \( 1 + (-0.988 + 0.149i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.936 - 0.351i)T \) |
| 47 | \( 1 + (-0.946 + 0.323i)T \) |
| 53 | \( 1 + (-0.420 - 0.907i)T \) |
| 59 | \( 1 + (0.971 + 0.237i)T \) |
| 61 | \( 1 + (0.712 - 0.701i)T \) |
| 67 | \( 1 + (-0.575 - 0.817i)T \) |
| 73 | \( 1 + (0.842 - 0.538i)T \) |
| 79 | \( 1 + (-0.925 - 0.379i)T \) |
| 83 | \( 1 + (0.691 - 0.722i)T \) |
| 89 | \( 1 + (-0.575 + 0.817i)T \) |
| 97 | \( 1 + (-0.900 - 0.433i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.75465351228717420649006863837, −22.71119777096028480523416772532, −21.59986688198913987155623794083, −21.14276732212107748652478526577, −20.11523371390318274217157348197, −19.27568230082918734769086704001, −18.89796777172980458747433369749, −17.99561437315794169077122821791, −15.97504704549030184746189138082, −15.78715019474128078692749482785, −14.60080167301738686342831174822, −13.948509407863142402242681671750, −13.44158138476355458574765311634, −12.16921773319076785098557519318, −11.53119425090486668365635140371, −10.55046295703004507893741186677, −9.5602955741311464695776682712, −8.371059812646716446071209501837, −7.31181108174642965245229872717, −6.62573532551369803023218395436, −5.35437818200981045615443369391, −4.01021161422361822546564924822, −3.28890256494457021694548523010, −2.57865111710016815795801903521, −1.21675872801497985342108619365,
1.70299292971066502471238513877, 3.05955161245354140629714770664, 3.808643126602795817916629945, 4.74736011411328525302215837974, 5.55718750934821213711686664593, 7.057112446781339929395100395887, 8.13729725788238910925511905088, 8.21550755221834020743527350893, 9.74623577800445459829784928017, 10.72842432216315942528202688908, 12.169047368304678284659942446120, 12.659243223566685565147258163174, 13.50741700119877836977159410298, 14.54535175820144871160123563981, 15.168462792748926364906816188046, 15.98639145915808152525577844255, 16.50018832829036669867050229608, 17.76868935279739155254271688164, 18.94995873108399377998947700299, 20.068102336341367236185759464239, 20.6192882370490760311447472664, 21.017541907879597609855343039617, 22.30647224611578660830247964267, 23.02687280878453348533368345356, 23.899896705469702665225336424