L(s) = 1 | + (0.986 − 0.162i)3-s + (−0.729 + 0.683i)5-s + (−0.980 + 0.195i)7-s + (0.946 − 0.321i)9-s + (0.995 − 0.0980i)11-s + (0.683 − 0.729i)13-s + (−0.608 + 0.793i)15-s + (−0.608 − 0.793i)17-s + (−0.935 + 0.352i)21-s + (−0.442 + 0.896i)23-s + (0.0654 − 0.997i)25-s + (0.881 − 0.471i)27-s + (−0.910 + 0.412i)29-s + (−0.707 + 0.707i)31-s + (0.965 − 0.258i)33-s + ⋯ |
L(s) = 1 | + (0.986 − 0.162i)3-s + (−0.729 + 0.683i)5-s + (−0.980 + 0.195i)7-s + (0.946 − 0.321i)9-s + (0.995 − 0.0980i)11-s + (0.683 − 0.729i)13-s + (−0.608 + 0.793i)15-s + (−0.608 − 0.793i)17-s + (−0.935 + 0.352i)21-s + (−0.442 + 0.896i)23-s + (0.0654 − 0.997i)25-s + (0.881 − 0.471i)27-s + (−0.910 + 0.412i)29-s + (−0.707 + 0.707i)31-s + (0.965 − 0.258i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.900 + 0.434i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.002386074 + 0.4581140178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.002386074 + 0.4581140178i\) |
\(L(1)\) |
\(\approx\) |
\(1.271576808 + 0.08639235920i\) |
\(L(1)\) |
\(\approx\) |
\(1.271576808 + 0.08639235920i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.986 - 0.162i)T \) |
| 5 | \( 1 + (-0.729 + 0.683i)T \) |
| 7 | \( 1 + (-0.980 + 0.195i)T \) |
| 11 | \( 1 + (0.995 - 0.0980i)T \) |
| 13 | \( 1 + (0.683 - 0.729i)T \) |
| 17 | \( 1 + (-0.608 - 0.793i)T \) |
| 23 | \( 1 + (-0.442 + 0.896i)T \) |
| 29 | \( 1 + (-0.910 + 0.412i)T \) |
| 31 | \( 1 + (-0.707 + 0.707i)T \) |
| 37 | \( 1 + (0.471 + 0.881i)T \) |
| 41 | \( 1 + (0.0654 + 0.997i)T \) |
| 43 | \( 1 + (0.352 + 0.935i)T \) |
| 47 | \( 1 + (-0.130 - 0.991i)T \) |
| 53 | \( 1 + (0.812 - 0.582i)T \) |
| 59 | \( 1 + (0.683 + 0.729i)T \) |
| 61 | \( 1 + (-0.935 - 0.352i)T \) |
| 67 | \( 1 + (0.935 + 0.352i)T \) |
| 71 | \( 1 + (-0.946 - 0.321i)T \) |
| 73 | \( 1 + (0.659 - 0.751i)T \) |
| 79 | \( 1 + (0.130 - 0.991i)T \) |
| 83 | \( 1 + (0.471 - 0.881i)T \) |
| 89 | \( 1 + (0.997 + 0.0654i)T \) |
| 97 | \( 1 + (0.258 + 0.965i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.31537910166282498564227052119, −17.05915524286340180972136102347, −16.67686370897257038539153828312, −15.94437180240342739984577690461, −15.4986041969095994272693312970, −14.72766034693008346370834709788, −14.06668741718354543981749358761, −13.334258107973100309801954797395, −12.74431632196424620970809222400, −12.237911103087283810515801502008, −11.26732398599427062850962700856, −10.61392137576451834609020531950, −9.60989543187218809023112140380, −9.09268040088030512327308795239, −8.72243383944030410213138906564, −7.867156428088226886090673957833, −7.131727784360780251238749125303, −6.47800692842276051131932790882, −5.63756819877427733635425279964, −4.28142415246816008195135652793, −4.008416572282732075763987882212, −3.610157883835680968250304860095, −2.39883672318671868945508744860, −1.69293478224091394171245302385, −0.637913311971916523077848100717,
0.78306191928296136581908067263, 1.84044299277430559108236956339, 2.7983776487502804658717568494, 3.45663913234715887384385742262, 3.7073283041030663871497970729, 4.72121151680654313182492875942, 5.955760591007369262884686227298, 6.59574964240853867303725426861, 7.19824153249119152321265796575, 7.8357199024209949642869248766, 8.67456523419725149198170914029, 9.23347896405098017547774513979, 9.88235424472913158047328985367, 10.66293432187606330156998766337, 11.52785184454267352080148247380, 12.05325400209056321725376311440, 13.03899793950390441560444120509, 13.38723214007437653078352115958, 14.19851438941256867501353369376, 14.943179381844982984939776911481, 15.29725996552459897440069197073, 16.13366628434460156552449784484, 16.45151980522949801619882827842, 17.85994855793208626747872264012, 18.21050499706319053378993908924