| L(s) = 1 | + (0.447 − 0.894i)2-s + (−0.599 − 0.800i)4-s + (−0.791 − 0.611i)5-s + (−0.983 + 0.178i)8-s + (−0.900 + 0.433i)10-s + (0.998 − 0.0598i)13-s + (−0.280 + 0.959i)16-s + (−0.995 + 0.0896i)17-s + (−0.809 + 0.587i)19-s + (−0.0149 + 0.999i)20-s + (0.955 + 0.294i)23-s + (0.251 + 0.967i)25-s + (0.393 − 0.919i)26-s + (0.946 + 0.323i)29-s + (−0.669 − 0.743i)31-s + (0.733 + 0.680i)32-s + ⋯ |
| L(s) = 1 | + (0.447 − 0.894i)2-s + (−0.599 − 0.800i)4-s + (−0.791 − 0.611i)5-s + (−0.983 + 0.178i)8-s + (−0.900 + 0.433i)10-s + (0.998 − 0.0598i)13-s + (−0.280 + 0.959i)16-s + (−0.995 + 0.0896i)17-s + (−0.809 + 0.587i)19-s + (−0.0149 + 0.999i)20-s + (0.955 + 0.294i)23-s + (0.251 + 0.967i)25-s + (0.393 − 0.919i)26-s + (0.946 + 0.323i)29-s + (−0.669 − 0.743i)31-s + (0.733 + 0.680i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.672 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.672 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5703479456 - 1.288912778i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5703479456 - 1.288912778i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8264656190 - 0.6150539915i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8264656190 - 0.6150539915i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (0.447 - 0.894i)T \) |
| 5 | \( 1 + (-0.791 - 0.611i)T \) |
| 13 | \( 1 + (0.998 - 0.0598i)T \) |
| 17 | \( 1 + (-0.995 + 0.0896i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (0.955 + 0.294i)T \) |
| 29 | \( 1 + (0.946 + 0.323i)T \) |
| 31 | \( 1 + (-0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.753 - 0.657i)T \) |
| 41 | \( 1 + (-0.337 + 0.941i)T \) |
| 43 | \( 1 + (-0.826 - 0.563i)T \) |
| 47 | \( 1 + (-0.887 + 0.460i)T \) |
| 53 | \( 1 + (-0.995 - 0.0896i)T \) |
| 59 | \( 1 + (0.646 - 0.762i)T \) |
| 61 | \( 1 + (0.575 + 0.817i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.858 - 0.512i)T \) |
| 73 | \( 1 + (-0.0448 - 0.998i)T \) |
| 79 | \( 1 + (0.978 - 0.207i)T \) |
| 83 | \( 1 + (0.998 + 0.0598i)T \) |
| 89 | \( 1 + (-0.623 - 0.781i)T \) |
| 97 | \( 1 + (0.978 - 0.207i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.19049457248357400945292253357, −17.72109074071505605512742151366, −16.85307904386697806566254663469, −16.213409743382386375488462411338, −15.4980745413651550749666730433, −15.22230601268937764128113019092, −14.45976244630843646947006454946, −13.769616276582904682589449829567, −13.08709158594160540826380300920, −12.53296671664395020627961009715, −11.538307933271334438211361261292, −11.13732389757587827998967404092, −10.32834143933409422228990794444, −9.22648642868142828689033119618, −8.51908634788199611584055712038, −8.16652443841941515945548323024, −7.13622758140974115400627673026, −6.63408804791406367256754336117, −6.223876863652377041666589642734, −4.99839275681633426457035028303, −4.53449533695720882705658313902, −3.686353590023600108559123779139, −3.11720515182926437576403757322, −2.21640284239212595832591441152, −0.71388060232044357064123890216,
0.483664585905527517812214547167, 1.38173867863316472171165192364, 2.13732995528727302829551528806, 3.23767150360986340468960636872, 3.749162723564453166601704905588, 4.52927760135638649444916464516, 5.01885999980854964639572080035, 6.027289475807005991339644334960, 6.61945856020971322113547744377, 7.76097835475932539815921055400, 8.56628685862575906992221686111, 8.93199171919311254181777899797, 9.79270034008308317442720077860, 10.70010961787051982640897262610, 11.224256030548409674662130202437, 11.68437237372627118473002509109, 12.62869411158543819993312986431, 13.02635316421716650490539328789, 13.53564769472145722413350429666, 14.58591694588203968008001522679, 15.060439715146667454820630983008, 15.78246885498225649189634344755, 16.4297512469926621632085257491, 17.278697943018677085999481775823, 18.08158326773636315395418555680