| L(s) = 1 | + (0.163 + 0.986i)2-s + (−0.946 + 0.323i)4-s + (0.280 + 0.959i)5-s + (−0.473 − 0.880i)8-s + (−0.900 + 0.433i)10-s + (−0.772 + 0.635i)13-s + (0.791 − 0.611i)16-s + (0.858 + 0.512i)17-s + (−0.809 − 0.587i)19-s + (−0.575 − 0.817i)20-s + (0.955 + 0.294i)23-s + (−0.842 + 0.538i)25-s + (−0.753 − 0.657i)26-s + (0.599 − 0.800i)29-s + (0.978 + 0.207i)31-s + (0.733 + 0.680i)32-s + ⋯ |
| L(s) = 1 | + (0.163 + 0.986i)2-s + (−0.946 + 0.323i)4-s + (0.280 + 0.959i)5-s + (−0.473 − 0.880i)8-s + (−0.900 + 0.433i)10-s + (−0.772 + 0.635i)13-s + (0.791 − 0.611i)16-s + (0.858 + 0.512i)17-s + (−0.809 − 0.587i)19-s + (−0.575 − 0.817i)20-s + (0.955 + 0.294i)23-s + (−0.842 + 0.538i)25-s + (−0.753 − 0.657i)26-s + (0.599 − 0.800i)29-s + (0.978 + 0.207i)31-s + (0.733 + 0.680i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.845 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.845 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4261154097 - 0.1231082263i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4261154097 - 0.1231082263i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7231337675 + 0.5289511696i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7231337675 + 0.5289511696i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (0.163 + 0.986i)T \) |
| 5 | \( 1 + (0.280 + 0.959i)T \) |
| 13 | \( 1 + (-0.772 + 0.635i)T \) |
| 17 | \( 1 + (0.858 + 0.512i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (0.955 + 0.294i)T \) |
| 29 | \( 1 + (0.599 - 0.800i)T \) |
| 31 | \( 1 + (0.978 + 0.207i)T \) |
| 37 | \( 1 + (-0.393 - 0.919i)T \) |
| 41 | \( 1 + (-0.999 - 0.0299i)T \) |
| 43 | \( 1 + (-0.826 - 0.563i)T \) |
| 47 | \( 1 + (-0.712 - 0.701i)T \) |
| 53 | \( 1 + (0.858 - 0.512i)T \) |
| 59 | \( 1 + (-0.525 - 0.850i)T \) |
| 61 | \( 1 + (0.0149 - 0.999i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.995 - 0.0896i)T \) |
| 73 | \( 1 + (-0.963 - 0.266i)T \) |
| 79 | \( 1 + (-0.669 + 0.743i)T \) |
| 83 | \( 1 + (-0.772 - 0.635i)T \) |
| 89 | \( 1 + (-0.623 - 0.781i)T \) |
| 97 | \( 1 + (-0.669 + 0.743i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.215261879127458582264895275050, −17.58090153181103709433093554026, −16.864433073184180681125802614207, −16.479575697910025864068842851825, −15.260592633312847656164618009815, −14.77869477191217610689799520173, −13.92635738915523649510609839525, −13.33139814238980521285983449438, −12.682736099283544023317144255944, −12.14886926864260096140913124527, −11.67909362854944076795278545905, −10.57912603336389570196972849365, −10.08215145213178755028442279704, −9.56003037305571157111014679161, −8.589728766707219689086722163293, −8.32106844435626076606204807011, −7.287547611764036513048518230734, −6.17562399915255024595397741687, −5.41980095967029792696118962800, −4.80622946124591057590698957542, −4.32221627402693015227009347506, −3.12917917102749721932919945686, −2.7286500486323334200374922845, −1.545596921510484570453714864018, −1.07671387037104333102549841457,
0.11755120792260424334679800843, 1.577494595618562872817617618348, 2.607205292676193757481548135156, 3.34261571554706826133317048548, 4.1571070327068399922737368182, 4.96609941403502125886314573008, 5.6478614412122023803739561983, 6.554118019684112986980579076734, 6.86001389376497127635397348129, 7.58845989352841167532117379246, 8.3949361451639052345126954962, 9.066145888040156209825271332975, 10.02168195228436439873081199386, 10.24989306001732564151565107784, 11.41464115531212453193334487998, 12.03548523767860389885762791671, 12.91624933942826358543650684703, 13.56281995577369803117339125734, 14.19281895740135466169382996074, 14.816106967262052104325239524267, 15.207506122214634330483467582228, 15.948765766721246739244845923463, 16.91702175745608352084406132275, 17.235742570255303993580576065102, 17.82036942582728871789420248646