| L(s) = 1 | + (−0.925 + 0.379i)2-s + (0.712 − 0.701i)4-s + (0.995 + 0.0896i)5-s + (−0.393 + 0.919i)8-s + (−0.955 + 0.294i)10-s + (0.925 − 0.379i)13-s + (0.0149 − 0.999i)16-s + (0.447 − 0.894i)17-s + (−0.913 + 0.406i)19-s + (0.772 − 0.635i)20-s + (0.623 + 0.781i)23-s + (0.983 + 0.178i)25-s + (−0.712 + 0.701i)26-s + (−0.842 − 0.538i)29-s + (0.978 + 0.207i)31-s + (0.365 + 0.930i)32-s + ⋯ |
| L(s) = 1 | + (−0.925 + 0.379i)2-s + (0.712 − 0.701i)4-s + (0.995 + 0.0896i)5-s + (−0.393 + 0.919i)8-s + (−0.955 + 0.294i)10-s + (0.925 − 0.379i)13-s + (0.0149 − 0.999i)16-s + (0.447 − 0.894i)17-s + (−0.913 + 0.406i)19-s + (0.772 − 0.635i)20-s + (0.623 + 0.781i)23-s + (0.983 + 0.178i)25-s + (−0.712 + 0.701i)26-s + (−0.842 − 0.538i)29-s + (0.978 + 0.207i)31-s + (0.365 + 0.930i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.845 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4851 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.845 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.793151853 - 0.5180700494i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.793151853 - 0.5180700494i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9075118119 + 0.05952383857i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9075118119 + 0.05952383857i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.925 + 0.379i)T \) |
| 5 | \( 1 + (0.995 + 0.0896i)T \) |
| 13 | \( 1 + (0.925 - 0.379i)T \) |
| 17 | \( 1 + (0.447 - 0.894i)T \) |
| 19 | \( 1 + (-0.913 + 0.406i)T \) |
| 23 | \( 1 + (0.623 + 0.781i)T \) |
| 29 | \( 1 + (-0.842 - 0.538i)T \) |
| 31 | \( 1 + (0.978 + 0.207i)T \) |
| 37 | \( 1 + (-0.842 - 0.538i)T \) |
| 41 | \( 1 + (-0.992 + 0.119i)T \) |
| 43 | \( 1 + (-0.733 - 0.680i)T \) |
| 47 | \( 1 + (-0.525 + 0.850i)T \) |
| 53 | \( 1 + (0.998 + 0.0598i)T \) |
| 59 | \( 1 + (-0.992 - 0.119i)T \) |
| 61 | \( 1 + (0.447 - 0.894i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.936 - 0.351i)T \) |
| 73 | \( 1 + (0.999 - 0.0299i)T \) |
| 79 | \( 1 + (0.669 - 0.743i)T \) |
| 83 | \( 1 + (0.925 + 0.379i)T \) |
| 89 | \( 1 + (-0.0747 + 0.997i)T \) |
| 97 | \( 1 + (0.978 + 0.207i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.130323933687235402097594012242, −17.27317083766165031615407430894, −16.82188805014245986503366157454, −16.418606227163613108049300766531, −15.290729170219126744190574432, −14.89556331517911428312991353252, −13.78989931358724079053863693408, −13.21020825046351758793797939711, −12.62469677498366745664854507429, −11.84998714497469036201188947939, −10.989983314721691961654909186547, −10.48783904055136714093004319877, −9.945472399941928158837228139267, −9.07451211546890063291855348157, −8.6032841392334225429069357334, −8.05293526905563108065635741428, −6.739416454324775113271355761150, −6.60366202497978937055154644630, −5.70607074764717230709614236030, −4.73757464604960633844455526861, −3.74805796100279332164970461336, −3.017067633296961901516847347552, −2.07178095805264558295092765965, −1.56177936293877726746146826490, −0.73330254251971664405666739783,
0.43766787731287856660249616637, 1.318534395385638655817042603871, 1.96047644075499190287272871375, 2.8288026888931033328871280486, 3.665782691116968612782660506590, 5.06896251614327435198923330675, 5.46951059531566826624176688992, 6.34510642520226936247060038670, 6.75385920300762416408419038898, 7.70377202109567081609331748881, 8.358502594360185020377621875038, 9.11454294288557673595754657850, 9.614567389957023321707857560636, 10.37079379416616194426873577542, 10.843094591987259300984599173926, 11.62869068549614983700971288372, 12.449857483186017518346674910089, 13.495109449714911675798489535705, 13.782558975364908277077124857322, 14.74500604900632713698701576472, 15.27035832447742524859582759668, 16.018931165941947926194372583682, 16.71487653230274816483726490257, 17.29323547302408504321997904423, 17.774963680329552479567590657811