L(s) = 1 | + (0.888 + 0.458i)2-s + (0.580 + 0.814i)4-s + (0.723 + 0.690i)5-s + (0.142 + 0.989i)8-s + (0.327 + 0.945i)10-s + (−0.888 + 0.458i)11-s + (−0.654 + 0.755i)13-s + (−0.327 + 0.945i)16-s + (−0.995 − 0.0950i)17-s + (0.995 − 0.0950i)19-s + (−0.142 + 0.989i)20-s − 22-s + (0.0475 + 0.998i)25-s + (−0.928 + 0.371i)26-s + (−0.415 − 0.909i)29-s + ⋯ |
L(s) = 1 | + (0.888 + 0.458i)2-s + (0.580 + 0.814i)4-s + (0.723 + 0.690i)5-s + (0.142 + 0.989i)8-s + (0.327 + 0.945i)10-s + (−0.888 + 0.458i)11-s + (−0.654 + 0.755i)13-s + (−0.327 + 0.945i)16-s + (−0.995 − 0.0950i)17-s + (0.995 − 0.0950i)19-s + (−0.142 + 0.989i)20-s − 22-s + (0.0475 + 0.998i)25-s + (−0.928 + 0.371i)26-s + (−0.415 − 0.909i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.370 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.370 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.305585517 + 1.925601261i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.305585517 + 1.925601261i\) |
\(L(1)\) |
\(\approx\) |
\(1.507814833 + 0.9587695505i\) |
\(L(1)\) |
\(\approx\) |
\(1.507814833 + 0.9587695505i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.888 + 0.458i)T \) |
| 5 | \( 1 + (0.723 + 0.690i)T \) |
| 11 | \( 1 + (-0.888 + 0.458i)T \) |
| 13 | \( 1 + (-0.654 + 0.755i)T \) |
| 17 | \( 1 + (-0.995 - 0.0950i)T \) |
| 19 | \( 1 + (0.995 - 0.0950i)T \) |
| 29 | \( 1 + (-0.415 - 0.909i)T \) |
| 31 | \( 1 + (0.928 + 0.371i)T \) |
| 37 | \( 1 + (-0.235 - 0.971i)T \) |
| 41 | \( 1 + (0.959 - 0.281i)T \) |
| 43 | \( 1 + (0.142 - 0.989i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.981 - 0.189i)T \) |
| 59 | \( 1 + (0.327 + 0.945i)T \) |
| 61 | \( 1 + (0.786 - 0.618i)T \) |
| 67 | \( 1 + (-0.0475 - 0.998i)T \) |
| 71 | \( 1 + (-0.841 + 0.540i)T \) |
| 73 | \( 1 + (0.580 + 0.814i)T \) |
| 79 | \( 1 + (-0.981 - 0.189i)T \) |
| 83 | \( 1 + (-0.959 - 0.281i)T \) |
| 89 | \( 1 + (0.928 - 0.371i)T \) |
| 97 | \( 1 + (0.959 - 0.281i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.51708174678739301947365275613, −22.41995510333819736969050887148, −21.87861834599834298963151194570, −20.952748090117154449966872882410, −20.34412679352828905218193728106, −19.598574039388571303485775303, −18.41683712847969988206797505, −17.60440316100760669180694915344, −16.42474809363344037704001650979, −15.68777823279626062673001953758, −14.739211550466187528323478180889, −13.65988320318787227014908390135, −13.17126418525308090375847657061, −12.38365309767421676055366756981, −11.35844196755483227518444529524, −10.34759315697012377462653686888, −9.66758486478024697348935089961, −8.46666462323263449435679979751, −7.23173761787747804665471216012, −5.9910149116823838372506778402, −5.286322180881152837527171077342, −4.52014802563271174896571475663, −3.08892457239032704113174389488, −2.25557955565660227068126475897, −0.93425368499399522959342787435,
2.13176472684529840960757985196, 2.700763174571455861640219565361, 4.07435680785842247516344927841, 5.08921741161316364506799422308, 5.95112242424889510746963817130, 7.001428657785748228925007768383, 7.53843120880713379224693867245, 8.96813783766896633794721202476, 10.0405561893240489260214855890, 11.04204180836879377230497406895, 11.94015925977025688105682786840, 12.99504446128962562844740995563, 13.75230112172644119792618803529, 14.40825676865681284004093586571, 15.378599123071440211070063999434, 16.03004846088950351192162809443, 17.28138236343599528501773455917, 17.76633182707925510598405044715, 18.85008188028707528159685431254, 20.01970155964977696632452029461, 20.99112689472371380634182118003, 21.572983118174165865902273699479, 22.49386614041482407345503501415, 22.95534947981393350020221215769, 24.17238217464017678508647447993