| L(s) = 1 | + (0.766 − 0.642i)5-s + (0.5 + 0.866i)11-s + (−0.766 − 0.642i)13-s + (0.766 − 0.642i)17-s + (−0.766 − 0.642i)23-s + (0.173 − 0.984i)25-s + (−0.766 − 0.642i)29-s + 31-s + (0.5 + 0.866i)37-s + (0.939 + 0.342i)41-s + (0.939 + 0.342i)43-s + (−0.173 + 0.984i)47-s + (0.939 − 0.342i)53-s + (0.939 + 0.342i)55-s + (0.173 + 0.984i)59-s + ⋯ |
| L(s) = 1 | + (0.766 − 0.642i)5-s + (0.5 + 0.866i)11-s + (−0.766 − 0.642i)13-s + (0.766 − 0.642i)17-s + (−0.766 − 0.642i)23-s + (0.173 − 0.984i)25-s + (−0.766 − 0.642i)29-s + 31-s + (0.5 + 0.866i)37-s + (0.939 + 0.342i)41-s + (0.939 + 0.342i)43-s + (−0.173 + 0.984i)47-s + (0.939 − 0.342i)53-s + (0.939 + 0.342i)55-s + (0.173 + 0.984i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.534 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.534 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.840300262 - 1.013727721i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.840300262 - 1.013727721i\) |
| \(L(1)\) |
\(\approx\) |
\(1.240328407 - 0.2286722848i\) |
| \(L(1)\) |
\(\approx\) |
\(1.240328407 - 0.2286722848i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (0.766 - 0.642i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.766 - 0.642i)T \) |
| 17 | \( 1 + (0.766 - 0.642i)T \) |
| 23 | \( 1 + (-0.766 - 0.642i)T \) |
| 29 | \( 1 + (-0.766 - 0.642i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + (0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.173 + 0.984i)T \) |
| 53 | \( 1 + (0.939 - 0.342i)T \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.766 + 0.642i)T \) |
| 71 | \( 1 + (0.766 - 0.642i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.939 - 0.342i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.173 - 0.984i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.35215580960904905160511883761, −17.38468192828379144137765265550, −17.084852254038431037361783941201, −16.33870898247818991681648969959, −15.57283113208266326572480903525, −14.602722593029130043147866277113, −14.313110046648501640934273168, −13.73005219152115850488819508590, −12.913141786456239429367554865118, −12.1464053707397392594369432302, −11.44734862074676631089849930618, −10.77779801745661282491720311728, −10.0700459919604381655684905775, −9.44682559327838306339360823344, −8.84352486381792902291719364423, −7.85846893929018299735658469350, −7.217351987875231633199589456480, −6.41002071106945746662340970622, −5.82444517690811406555954961376, −5.23103993476923866785441795449, −4.04554865148486591844964066013, −3.50788540074012989136720833551, −2.538218659050254185644339191633, −1.89875531652650834330032961096, −0.95675837326301667688736628156,
0.63825857070401444539429910626, 1.48537643999427128621588145408, 2.38609189251420998988318393686, 2.97544062550115704888328167242, 4.388699556547978128190816930975, 4.55890861713709429153146503300, 5.66193082224752935940727045977, 6.04584093811188227768582468308, 7.07945827289137711374177594880, 7.72923571358553209775691719580, 8.45902709069888987625570972816, 9.383494568070780690181832403937, 9.8386861535305619690124730143, 10.26497087298596165077050256337, 11.40107127272304078349596184313, 12.15668676737317962332215008784, 12.56623275155276270623700882851, 13.29103008366085202167433358654, 14.058458336275131888045750422, 14.61650566579322771255462508141, 15.29377038657554371191518285097, 16.18337357101024646941665776489, 16.751250496766924798144169568288, 17.40674364147501896332354471938, 17.85340944555402721380150749990