| L(s) = 1 | + (−0.173 − 0.984i)5-s + 11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)23-s + (−0.939 + 0.342i)25-s + (0.939 − 0.342i)29-s + (0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (−0.173 − 0.984i)41-s + (−0.173 − 0.984i)43-s + (0.173 − 0.984i)47-s + (−0.766 − 0.642i)53-s + (−0.173 − 0.984i)55-s + (0.173 + 0.984i)59-s + ⋯ |
| L(s) = 1 | + (−0.173 − 0.984i)5-s + 11-s + (−0.939 + 0.342i)13-s + (−0.766 + 0.642i)17-s + (0.766 + 0.642i)23-s + (−0.939 + 0.342i)25-s + (0.939 − 0.342i)29-s + (0.5 − 0.866i)31-s + (−0.5 + 0.866i)37-s + (−0.173 − 0.984i)41-s + (−0.173 − 0.984i)43-s + (0.173 − 0.984i)47-s + (−0.766 − 0.642i)53-s + (−0.173 − 0.984i)55-s + (0.173 + 0.984i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7808910969 - 0.9775566782i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7808910969 - 0.9775566782i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9535032960 - 0.2210303962i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9535032960 - 0.2210303962i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (-0.173 - 0.984i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.939 + 0.342i)T \) |
| 17 | \( 1 + (-0.766 + 0.642i)T \) |
| 23 | \( 1 + (0.766 + 0.642i)T \) |
| 29 | \( 1 + (0.939 - 0.342i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + (-0.766 - 0.642i)T \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (-0.939 + 0.342i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (-0.939 - 0.342i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.766 + 0.642i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.939 - 0.342i)T \) |
| 97 | \( 1 + (0.766 - 0.642i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.30291101535430927975208138313, −17.576119553643375910411347672441, −17.24323978247582393164062029991, −16.181094714596450083828936458276, −15.68557937396480113653181287591, −14.770447632135546664331606537601, −14.46004422977097537257287509795, −13.83718683842958942740007044699, −12.90071194558091790997732588230, −12.16656796425592218774316463515, −11.58555842817697177228662157783, −10.85121693128959252536385602789, −10.30509531043213423330157444830, −9.45411103443051521599990439510, −8.900405822300664836401202045468, −7.91901400059135444177100506711, −7.24633648541823504609534300525, −6.59059322183327087887681558628, −6.15651492982054411950508803689, −4.84357274000192459638722183717, −4.51897449304096245011634394774, −3.30447451469377715572902096727, −2.89467938228427361601415302447, −2.02566790383017343715892358980, −0.93880412567476434550987755056,
0.38268154557187263244703166843, 1.43330104384820717264330263874, 2.06966141153926927414779367597, 3.167394684339550724800195414631, 4.1235743396812216746253921174, 4.54737534492198192629246212038, 5.34639280912516952658902335744, 6.17424057886167971288071620096, 6.9556572922719654690128000213, 7.6106527528440745149928422552, 8.71578501331337987305631336237, 8.8108145903998991841603043633, 9.75264767272293714840750866048, 10.347393819029587185469700765629, 11.47080214119974113286315440179, 11.88590180884506096573924164466, 12.43978272332404760687366364871, 13.351955651526715009915781836073, 13.72767938560548730067060969772, 14.74099185411418018054654139982, 15.26582241302477628004725917739, 15.93723755936062090500852620676, 16.83266347159974741943025597754, 17.20657665465286148378501406612, 17.59902700014026976887443354103