| L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)17-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)29-s + 31-s + (0.5 − 0.866i)37-s + (0.5 − 0.866i)41-s + (0.5 + 0.866i)43-s − 47-s + (0.5 + 0.866i)53-s − 55-s + 59-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.5 − 0.866i)11-s + (0.5 − 0.866i)13-s + (−0.5 − 0.866i)17-s + (0.5 + 0.866i)23-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)29-s + 31-s + (0.5 − 0.866i)37-s + (0.5 − 0.866i)41-s + (0.5 + 0.866i)43-s − 47-s + (0.5 + 0.866i)53-s − 55-s + 59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.281 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.281 - 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.448991576 - 1.084598277i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.448991576 - 1.084598277i\) |
| \(L(1)\) |
\(\approx\) |
\(1.056225113 - 0.3155438600i\) |
| \(L(1)\) |
\(\approx\) |
\(1.056225113 - 0.3155438600i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
| good | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.26429319157804906453289429846, −17.64674765879355452216296864700, −17.01366167263622261325822707315, −16.196810002982295168118083771700, −15.50948748833046513106836299356, −14.877043769654624581035338420550, −14.44822927104264348363578840954, −13.63000850667943568554576966536, −12.903029924399059226343056916665, −12.067220926572024809728647287214, −11.508682125793540906631991897745, −10.93343810612388308269290472398, −10.091360496925783222160496652354, −9.602978869679425891510312492460, −8.50119912129188714453096427872, −8.14483193589781737843108711697, −7.03543792995574493117550128184, −6.62770835669395733640967595384, −6.11157124114791213599132857457, −4.80077506232145936980492677989, −4.213315553890158188257907647047, −3.62995098602496930754194462978, −2.57334717170979796720779496881, −2.00166154499662285927279902823, −0.87438909054374818896163427793,
0.71543932510988740305780770212, 1.10076876146008027248274029500, 2.393775072032733992040072615, 3.31392871127225798519189784136, 3.87984745872824997942843476428, 4.81760710424387291121041268577, 5.39600482403244314580611115510, 6.15989996983512402572886458197, 7.03395294116169246734420313898, 7.836821293208230759384364170702, 8.44819575281157110310160374291, 9.06965561882906957850307983017, 9.64906175875074377195856520474, 10.75428927595970662029637827274, 11.262098796056945407554634108666, 11.904133545183266172747021780348, 12.654307824581490586629241303683, 13.29352472275048336862091337042, 13.84532445821968123845308856689, 14.68495742350186749969428496879, 15.53908985440606860428503893797, 16.041274039355374948845473318113, 16.47045582447396504766212423076, 17.43911689345602355115565863287, 17.813174658138378801896054572886