| L(s) = 1 | + (−0.615 + 0.788i)2-s + (0.438 − 0.898i)3-s + (−0.241 − 0.970i)4-s + (0.438 + 0.898i)6-s + (−0.5 + 0.866i)7-s + (0.913 + 0.406i)8-s + (−0.615 − 0.788i)9-s + (−0.978 + 0.207i)11-s + (−0.978 − 0.207i)12-s + (0.990 − 0.139i)13-s + (−0.374 − 0.927i)14-s + (−0.882 + 0.469i)16-s + (0.961 − 0.275i)17-s + 18-s + (0.559 + 0.829i)21-s + (0.438 − 0.898i)22-s + ⋯ |
| L(s) = 1 | + (−0.615 + 0.788i)2-s + (0.438 − 0.898i)3-s + (−0.241 − 0.970i)4-s + (0.438 + 0.898i)6-s + (−0.5 + 0.866i)7-s + (0.913 + 0.406i)8-s + (−0.615 − 0.788i)9-s + (−0.978 + 0.207i)11-s + (−0.978 − 0.207i)12-s + (0.990 − 0.139i)13-s + (−0.374 − 0.927i)14-s + (−0.882 + 0.469i)16-s + (0.961 − 0.275i)17-s + 18-s + (0.559 + 0.829i)21-s + (0.438 − 0.898i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.952 - 0.304i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.952 - 0.304i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9960848417 - 0.1551420999i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9960848417 - 0.1551420999i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8627841591 + 0.01043999958i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8627841591 + 0.01043999958i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.615 + 0.788i)T \) |
| 3 | \( 1 + (0.438 - 0.898i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.978 + 0.207i)T \) |
| 13 | \( 1 + (0.990 - 0.139i)T \) |
| 17 | \( 1 + (0.961 - 0.275i)T \) |
| 23 | \( 1 + (0.848 - 0.529i)T \) |
| 29 | \( 1 + (0.961 + 0.275i)T \) |
| 31 | \( 1 + (-0.104 - 0.994i)T \) |
| 37 | \( 1 + (0.309 + 0.951i)T \) |
| 41 | \( 1 + (-0.882 + 0.469i)T \) |
| 43 | \( 1 + (0.766 - 0.642i)T \) |
| 47 | \( 1 + (0.961 + 0.275i)T \) |
| 53 | \( 1 + (-0.241 - 0.970i)T \) |
| 59 | \( 1 + (0.0348 - 0.999i)T \) |
| 61 | \( 1 + (0.848 - 0.529i)T \) |
| 67 | \( 1 + (0.559 - 0.829i)T \) |
| 71 | \( 1 + (-0.997 + 0.0697i)T \) |
| 73 | \( 1 + (0.990 + 0.139i)T \) |
| 79 | \( 1 + (0.438 - 0.898i)T \) |
| 83 | \( 1 + (-0.104 - 0.994i)T \) |
| 89 | \( 1 + (-0.882 - 0.469i)T \) |
| 97 | \( 1 + (0.559 + 0.829i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.45816850809859151406015194222, −22.97879724346355306202855953763, −21.7896545384806290137052963452, −21.048562692205705186706070198494, −20.6314384522925658493608291080, −19.60422293670001661122652288368, −19.04893729997215178498065355842, −17.95353641415364779501320470434, −16.92066915015214651963058374043, −16.23813902369646746726071093816, −15.54973519093318705056261016690, −14.06530203712548272832758102968, −13.46514684117546102664485711285, −12.49851563728226248874075958551, −11.13534040100036986501742388945, −10.55941191764836430919916465431, −9.91555708552381217533943664669, −8.92172532281890749871526115110, −8.11212496796486291798829620821, −7.173702338472451962848472218056, −5.54720878821038350846827342137, −4.278974985039107705093419962672, −3.46636074732425223924427951924, −2.70663533696747889990391279377, −1.09480434639311906535780490502,
0.815301084813312091035863445002, 2.168770265474204809871089908362, 3.228669803670302313906784453137, 5.08578754042437455422808553796, 5.99277673345926303572504548305, 6.747456048298918744952384404634, 7.83239787852426530455329969160, 8.45381981488969704474459856230, 9.31531152835040388803216913007, 10.30681022025028043394030189879, 11.532042781211764096831930830727, 12.696860333830680308324069149858, 13.38921188278629529988552608073, 14.37187282234806844492005025000, 15.279764037286300114419276081678, 15.93345568241534428077757141462, 16.99653470242144208150505328665, 18.02580729096452399480983717782, 18.73992505393989988585093837387, 18.93994783098330263413766695352, 20.2303993835120851866828108768, 20.95265709880935385844454154750, 22.43959712546526387957985113633, 23.32068603787060521928141232984, 23.81482100563302397813377120805