| L(s) = 1 | + (0.933 − 0.358i)2-s + (0.481 + 0.876i)3-s + (0.742 − 0.669i)4-s + (0.793 + 0.608i)5-s + (0.763 + 0.645i)6-s + (0.509 + 0.860i)7-s + (0.453 − 0.891i)8-s + (−0.536 + 0.843i)9-s + (0.959 + 0.283i)10-s + (0.835 − 0.549i)11-s + (0.944 + 0.328i)12-s + (0.927 + 0.373i)13-s + (0.783 + 0.620i)14-s + (−0.150 + 0.988i)15-s + (0.103 − 0.994i)16-s + (−0.516 + 0.856i)17-s + ⋯ |
| L(s) = 1 | + (0.933 − 0.358i)2-s + (0.481 + 0.876i)3-s + (0.742 − 0.669i)4-s + (0.793 + 0.608i)5-s + (0.763 + 0.645i)6-s + (0.509 + 0.860i)7-s + (0.453 − 0.891i)8-s + (−0.536 + 0.843i)9-s + (0.959 + 0.283i)10-s + (0.835 − 0.549i)11-s + (0.944 + 0.328i)12-s + (0.927 + 0.373i)13-s + (0.783 + 0.620i)14-s + (−0.150 + 0.988i)15-s + (0.103 − 0.994i)16-s + (−0.516 + 0.856i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.439 + 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(4.950622703 + 3.087514479i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.950622703 + 3.087514479i\) |
| \(L(1)\) |
\(\approx\) |
\(2.734322941 + 0.7735711689i\) |
| \(L(1)\) |
\(\approx\) |
\(2.734322941 + 0.7735711689i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 4729 | \( 1 \) |
| good | 2 | \( 1 + (0.933 - 0.358i)T \) |
| 3 | \( 1 + (0.481 + 0.876i)T \) |
| 5 | \( 1 + (0.793 + 0.608i)T \) |
| 7 | \( 1 + (0.509 + 0.860i)T \) |
| 11 | \( 1 + (0.835 - 0.549i)T \) |
| 13 | \( 1 + (0.927 + 0.373i)T \) |
| 17 | \( 1 + (-0.516 + 0.856i)T \) |
| 19 | \( 1 + (0.872 + 0.488i)T \) |
| 23 | \( 1 + (0.402 + 0.915i)T \) |
| 29 | \( 1 + (0.358 - 0.933i)T \) |
| 31 | \( 1 + (-0.905 + 0.424i)T \) |
| 37 | \( 1 + (-0.894 - 0.446i)T \) |
| 41 | \( 1 + (0.417 - 0.908i)T \) |
| 43 | \( 1 + (0.956 + 0.290i)T \) |
| 47 | \( 1 + (-0.205 - 0.978i)T \) |
| 53 | \( 1 + (-0.912 + 0.410i)T \) |
| 59 | \( 1 + (-0.981 + 0.190i)T \) |
| 61 | \( 1 + (-0.657 - 0.753i)T \) |
| 67 | \( 1 + (0.991 + 0.127i)T \) |
| 71 | \( 1 + (0.984 + 0.174i)T \) |
| 73 | \( 1 + (-0.803 - 0.595i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (-0.366 - 0.930i)T \) |
| 89 | \( 1 + (-0.726 - 0.687i)T \) |
| 97 | \( 1 + (-0.509 - 0.860i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.75740717479071138315399621924, −17.50935212499266997267220970361, −16.66089013979455568487110600008, −16.07514773635683985002178536495, −15.13197673892104730149874146591, −14.38746418131796306587062295057, −13.82853062801935902705694571545, −13.63725358540513671492123306032, −12.60259297792848132175392062172, −12.51177879093526411115014320956, −11.31820298827087795204024500240, −10.97220546593353216388640899970, −9.700487142789575379263012292801, −8.97548254811110544789946585938, −8.32521402225196963016838126765, −7.53347355327583312180212956225, −6.84641704519468831389042842113, −6.44148614886387936031358306362, −5.49398185451089991955747320249, −4.79222830841220689335741675000, −4.08608929954697910418770126547, −3.18064985204863848739070361570, −2.43254155905553341317997890081, −1.46229347663687915657896435326, −1.051952644612944056251401690723,
1.5609367807105619264344682564, 1.86510781191724115357668438547, 2.88905358793740679014846170297, 3.49429646730181534763967697976, 4.065813918486917298046662172507, 5.042697204543774283574269509994, 5.809949881392033158778472151200, 6.0316348296910669138380934480, 7.06926492397341194195549962311, 8.07887859559157425640803614352, 9.123865731776275032369818480309, 9.28721990261747433196699499167, 10.32800598448426864181788941389, 10.97246052504485506633912585784, 11.34055602953441858577551375008, 12.13757016262404089884607653323, 13.113238332438527969919172571886, 13.881657475178227121548430242354, 14.17130329378842111419569221812, 14.7384942600783036741744844770, 15.59056513065199675879382656532, 15.80371344926822152452726396258, 16.85409787730425323125320756774, 17.531456956820059793735062253704, 18.50290931185358927737991793885