| L(s) = 1 | + (0.495 + 0.868i)2-s + (−0.812 − 0.582i)3-s + (−0.509 + 0.860i)4-s + (−0.0132 + 0.999i)5-s + (0.103 − 0.994i)6-s + (0.977 + 0.211i)7-s + (−0.999 − 0.0159i)8-s + (0.321 + 0.947i)9-s + (−0.875 + 0.483i)10-s + (0.601 − 0.798i)11-s + (0.915 − 0.402i)12-s + (0.749 + 0.661i)13-s + (0.300 + 0.953i)14-s + (0.593 − 0.804i)15-s + (−0.481 − 0.876i)16-s + (−0.780 − 0.624i)17-s + ⋯ |
| L(s) = 1 | + (0.495 + 0.868i)2-s + (−0.812 − 0.582i)3-s + (−0.509 + 0.860i)4-s + (−0.0132 + 0.999i)5-s + (0.103 − 0.994i)6-s + (0.977 + 0.211i)7-s + (−0.999 − 0.0159i)8-s + (0.321 + 0.947i)9-s + (−0.875 + 0.483i)10-s + (0.601 − 0.798i)11-s + (0.915 − 0.402i)12-s + (0.749 + 0.661i)13-s + (0.300 + 0.953i)14-s + (0.593 − 0.804i)15-s + (−0.481 − 0.876i)16-s + (−0.780 − 0.624i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.363 + 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.363 + 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.480248834 + 1.011189465i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.480248834 + 1.011189465i\) |
| \(L(1)\) |
\(\approx\) |
\(1.008751047 + 0.5259245960i\) |
| \(L(1)\) |
\(\approx\) |
\(1.008751047 + 0.5259245960i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 4729 | \( 1 \) |
| good | 2 | \( 1 + (0.495 + 0.868i)T \) |
| 3 | \( 1 + (-0.812 - 0.582i)T \) |
| 5 | \( 1 + (-0.0132 + 0.999i)T \) |
| 7 | \( 1 + (0.977 + 0.211i)T \) |
| 11 | \( 1 + (0.601 - 0.798i)T \) |
| 13 | \( 1 + (0.749 + 0.661i)T \) |
| 17 | \( 1 + (-0.780 - 0.624i)T \) |
| 19 | \( 1 + (-0.254 - 0.966i)T \) |
| 23 | \( 1 + (-0.424 + 0.905i)T \) |
| 29 | \( 1 + (0.495 - 0.868i)T \) |
| 31 | \( 1 + (-0.793 + 0.608i)T \) |
| 37 | \( 1 + (0.643 - 0.765i)T \) |
| 41 | \( 1 + (-0.687 - 0.726i)T \) |
| 43 | \( 1 + (-0.140 - 0.990i)T \) |
| 47 | \( 1 + (0.999 - 0.0425i)T \) |
| 53 | \( 1 + (0.997 + 0.0743i)T \) |
| 59 | \( 1 + (-0.161 + 0.986i)T \) |
| 61 | \( 1 + (0.952 - 0.303i)T \) |
| 67 | \( 1 + (-0.0663 + 0.997i)T \) |
| 71 | \( 1 + (0.777 + 0.629i)T \) |
| 73 | \( 1 + (-0.326 + 0.945i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.635 - 0.772i)T \) |
| 89 | \( 1 + (0.882 - 0.469i)T \) |
| 97 | \( 1 + (0.977 + 0.211i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.09584970689310575921385143770, −17.385230263630041582221609468675, −16.79244555980422154793970403639, −16.06803021954944025875512826199, −15.040675091536572970544984753000, −14.90529519629017996279026853027, −13.92213281218080059539864942119, −13.03379166396137409369581466177, −12.52590940066787188492857589974, −11.96932526487943244192983530546, −11.30227539004256603334344958207, −10.67189228603443287778069762277, −10.115374440328331457897174423579, −9.34637057288162523044396609328, −8.61313554323448709596574867872, −8.00434425604610274215144853365, −6.598355071804171515662955232634, −5.99687349961282004866952900436, −5.22007807810500692205563498427, −4.62259401272820669380470314809, −4.14399481545992435264484354932, −3.55478265603253312141841002442, −2.09671169552606578783956360282, −1.43889016495580286090640630347, −0.76452677066641369993341587133,
0.64990873194932613453942053512, 1.92779769990002218496083637586, 2.62126336811539109737942164572, 3.82372991908360901514387317588, 4.31715442111332047878089819589, 5.37537051792751350509069850653, 5.80684709682516676059106920202, 6.60362456372381971286471326746, 7.06738670709152479909577231380, 7.6535220385022641009586361446, 8.62321312361461075562716135864, 9.05711746465886668335523964738, 10.37478826764852439597414832168, 11.241203619229292447234281993245, 11.52515019836065152561753117677, 12.02603962663986556227610755492, 13.232600381131812630202810031069, 13.741659578976093895230484926264, 14.092316710359272182800101217646, 14.93757360267205613643520328156, 15.73210190542472547818675092814, 16.10388382192692650555229623536, 17.1658244644675697902375313553, 17.51270643758423256406813226626, 18.12909711346791221252790612774