| L(s) = 1 | + (−0.599 − 0.800i)2-s + (0.155 − 0.987i)3-s + (−0.280 + 0.959i)4-s + (−0.539 + 0.842i)5-s + (−0.883 + 0.467i)6-s + (0.110 + 0.993i)7-s + (0.936 − 0.350i)8-s + (−0.951 − 0.307i)9-s + (0.997 − 0.0734i)10-s + (−0.990 + 0.137i)11-s + (0.904 + 0.426i)12-s + (0.729 − 0.684i)14-s + (0.748 + 0.663i)15-s + (−0.842 − 0.539i)16-s + (0.971 + 0.236i)17-s + (0.324 + 0.945i)18-s + ⋯ |
| L(s) = 1 | + (−0.599 − 0.800i)2-s + (0.155 − 0.987i)3-s + (−0.280 + 0.959i)4-s + (−0.539 + 0.842i)5-s + (−0.883 + 0.467i)6-s + (0.110 + 0.993i)7-s + (0.936 − 0.350i)8-s + (−0.951 − 0.307i)9-s + (0.997 − 0.0734i)10-s + (−0.990 + 0.137i)11-s + (0.904 + 0.426i)12-s + (0.729 − 0.684i)14-s + (0.748 + 0.663i)15-s + (−0.842 − 0.539i)16-s + (0.971 + 0.236i)17-s + (0.324 + 0.945i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.562 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.562 - 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2907143517 - 0.5497860571i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2907143517 - 0.5497860571i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5864082044 - 0.2560284105i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5864082044 - 0.2560284105i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (-0.599 - 0.800i)T \) |
| 3 | \( 1 + (0.155 - 0.987i)T \) |
| 5 | \( 1 + (-0.539 + 0.842i)T \) |
| 7 | \( 1 + (0.110 + 0.993i)T \) |
| 11 | \( 1 + (-0.990 + 0.137i)T \) |
| 17 | \( 1 + (0.971 + 0.236i)T \) |
| 23 | \( 1 + (0.777 - 0.628i)T \) |
| 29 | \( 1 + (-0.832 - 0.554i)T \) |
| 31 | \( 1 + (-0.0550 - 0.998i)T \) |
| 37 | \( 1 + (-0.376 + 0.926i)T \) |
| 41 | \( 1 + (0.783 - 0.621i)T \) |
| 43 | \( 1 + (0.562 - 0.826i)T \) |
| 47 | \( 1 + (-0.0367 + 0.999i)T \) |
| 53 | \( 1 + (0.467 + 0.883i)T \) |
| 59 | \( 1 + (-0.783 + 0.621i)T \) |
| 61 | \( 1 + (-0.861 - 0.507i)T \) |
| 67 | \( 1 + (-0.942 - 0.333i)T \) |
| 71 | \( 1 + (-0.492 + 0.870i)T \) |
| 73 | \( 1 + (0.723 + 0.690i)T \) |
| 79 | \( 1 + (0.562 - 0.826i)T \) |
| 83 | \( 1 + (-0.218 - 0.975i)T \) |
| 89 | \( 1 + (-0.959 - 0.280i)T \) |
| 97 | \( 1 + (0.942 - 0.333i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.20017829535322611130185298761, −17.53012165455646980460638355692, −16.77630977627908327366571163925, −16.34809548986769849960424531679, −16.02411467013138093821669232375, −15.16471071236664582737046305806, −14.67064202690868641472885656863, −13.84145973132260615895416351336, −13.29195912060479958598730428467, −12.38062523379992407444522625966, −11.21690578309831683302098946873, −10.82713541107629404238330451037, −10.13002191561275143886054460199, −9.3982049931416749006140340709, −8.90825664576362977700487445474, −7.92743837704683054152871875114, −7.7543022018364317058451267061, −6.88170803687458537022653095542, −5.595079779942991154893001733346, −5.24696531914424902237953969965, −4.59053674161343205918308547058, −3.810258052984103776041282610228, −3.03927590219019502418513432620, −1.61817790202600747213181459482, −0.71887090197786430255951756735,
0.29239304194316139324449063384, 1.44307508413309962817199447048, 2.373176353570108012294866892, 2.73753998924016982906008841803, 3.39677563644837812788677935541, 4.44405269455937372950248143981, 5.561166845411353648750077659282, 6.22629156963889281799601813703, 7.33434680552383922407732749701, 7.62875962875325386591347125657, 8.28537350591825700421089124322, 8.98045769453553147274068702175, 9.772527123250652995625182837593, 10.70811359934398375258856720589, 11.12221203652544843060703148252, 12.02135312108733106414941370011, 12.2795841947337854152673275355, 13.03037571848656401867210815113, 13.716030899592787516194153030717, 14.58962367135389087525417147170, 15.1991618399785934662903361626, 15.93037624588443866410358710171, 16.9441406985154866731483012496, 17.493835073719518983879884882204, 18.43009525614048956021362235920