| L(s)  = 1 | + (0.729 + 0.684i)2-s   + (0.515 + 0.856i)3-s   + (0.0642 + 0.997i)4-s   + (−0.384 + 0.922i)5-s   + (−0.209 + 0.977i)6-s   + (−0.993 + 0.110i)7-s   + (−0.635 + 0.771i)8-s   + (−0.467 + 0.883i)9-s   + (−0.912 + 0.410i)10-s   + (−0.137 − 0.990i)11-s   + (−0.821 + 0.569i)12-s     + (−0.800 − 0.599i)14-s   + (−0.989 + 0.146i)15-s   + (−0.991 + 0.128i)16-s   + (0.832 + 0.554i)17-s   + (−0.945 + 0.324i)18-s  + ⋯ | 
| L(s)  = 1 | + (0.729 + 0.684i)2-s   + (0.515 + 0.856i)3-s   + (0.0642 + 0.997i)4-s   + (−0.384 + 0.922i)5-s   + (−0.209 + 0.977i)6-s   + (−0.993 + 0.110i)7-s   + (−0.635 + 0.771i)8-s   + (−0.467 + 0.883i)9-s   + (−0.912 + 0.410i)10-s   + (−0.137 − 0.990i)11-s   + (−0.821 + 0.569i)12-s     + (−0.800 − 0.599i)14-s   + (−0.989 + 0.146i)15-s   + (−0.991 + 0.128i)16-s   + (0.832 + 0.554i)17-s   + (−0.945 + 0.324i)18-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 4693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.926 - 0.375i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4693 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.926 - 0.375i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(-0.3238081640 + 0.06308816358i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(-0.3238081640 + 0.06308816358i\) | 
    
        
      | \(L(1)\) | \(\approx\) | \(0.6390179656 + 0.9670934216i\) | 
    
      | \(L(1)\) | \(\approx\) | \(0.6390179656 + 0.9670934216i\) | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 13 | \( 1 \) | 
|  | 19 | \( 1 \) | 
| good | 2 | \( 1 + (0.729 + 0.684i)T \) | 
|  | 3 | \( 1 + (0.515 + 0.856i)T \) | 
|  | 5 | \( 1 + (-0.384 + 0.922i)T \) | 
|  | 7 | \( 1 + (-0.993 + 0.110i)T \) | 
|  | 11 | \( 1 + (-0.137 - 0.990i)T \) | 
|  | 17 | \( 1 + (0.832 + 0.554i)T \) | 
|  | 23 | \( 1 + (-0.999 - 0.0183i)T \) | 
|  | 29 | \( 1 + (-0.971 - 0.236i)T \) | 
|  | 31 | \( 1 + (-0.451 + 0.892i)T \) | 
|  | 37 | \( 1 + (-0.789 + 0.614i)T \) | 
|  | 41 | \( 1 + (0.979 + 0.200i)T \) | 
|  | 43 | \( 1 + (0.100 + 0.994i)T \) | 
|  | 47 | \( 1 + (-0.741 - 0.670i)T \) | 
|  | 53 | \( 1 + (-0.951 + 0.307i)T \) | 
|  | 59 | \( 1 + (-0.315 - 0.948i)T \) | 
|  | 61 | \( 1 + (0.983 + 0.182i)T \) | 
|  | 67 | \( 1 + (0.00918 + 0.999i)T \) | 
|  | 71 | \( 1 + (-0.983 + 0.182i)T \) | 
|  | 73 | \( 1 + (0.896 - 0.443i)T \) | 
|  | 79 | \( 1 + (0.811 - 0.584i)T \) | 
|  | 83 | \( 1 + (0.298 - 0.954i)T \) | 
|  | 89 | \( 1 + (0.896 + 0.443i)T \) | 
|  | 97 | \( 1 + (0.00918 - 0.999i)T \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−17.74660695740184949669823853732, −16.818747020333365128628441932025, −16.02727920695847804409443282951, −15.4517270739117065615602865272, −14.667986481596531635298699605546, −13.9980596841331316699871983664, −13.302772497789276600437943175575, −12.7471558763443629962324718452, −12.33515895860218711137515493455, −11.87790365585736346312116126161, −10.94516145279248886334974685099, −9.81762795185606353125957556681, −9.51586440404527775672443498946, −8.82442385208720996664166580801, −7.66547688211891563071399728252, −7.30906245229498953942231340191, −6.30869976487172969711762693710, −5.6619319734825121162241012709, −4.88852564827022697531090491093, −3.81103987165899095264315275252, −3.58345421988612418696950212270, −2.44728319181293304045039822618, −1.88877437801733119558018395427, −0.95246530933127372212791542011, −0.06606215316071778540360440314, 
2.07251484752438490975817194909, 3.00877180116080715024545126765, 3.43089283142091137518182320157, 3.81298214498708941985720430759, 4.810020448554437587309393896646, 5.81036498355748469680505498562, 6.11416493726311781077277538999, 7.04892742514543070667895749502, 7.859182401056971499511976856936, 8.32579081777738615810761578292, 9.202957279781716573682949104579, 9.967734919413200888247553538967, 10.67168612519340754673427893885, 11.369313561898907095365964684842, 12.1125658185296350000268768258, 13.0022815853357333609640477844, 13.60891492599712464588048472239, 14.42596571449216688965113448312, 14.61221099994706039411335573389, 15.52860876706371054917077217038, 16.03184973379338813175677613414, 16.37314622211878594985481914988, 17.15646561444780788550530504376, 18.11815899365149891735302685785, 18.96593256055970273444380214392
